

Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA

Wykorzystanie kanałów cyfrowych karta PCI6221/panel BNC2120

dr inż. Roland PAWLICZEK

Laboratorium komputerowe Mechatroniki

Zadanie: zbudować tor pomiaru sygnału napięciowego z generatora i utworzyć program do akwizycji i prezentacji wyników.

Start pomiaru będzie uruchamiany za pomocą zewnętrznego przełącznika.

Oprzyrządowanie:

Panel BNC 2120

- 1. Utworzyć główną pętlę sterującą While Loop.
- 2. Określić przerwę wykonywania pętli na 100ms wykorzystując funkcję **Wait**.

3. Wykorzystując **Prawy Klawisz Myszy** otworzyć **Paletę Funkcji** i wybrać opcję **EXPRESS.**

🎫 Physical	🚯 Yirtual	Z dostępnej listy zainstalowanych urządzeń wybrać kartę PCI 6221.
Supported Physical Charnels		Wskazać kanał ai0 (lub inne) jako źródło sygnału pomiarowego.
ai0		
ai2		

Configuration Triggering Advanced Timing	J Logging	Ustawić parametry	7:
	oltage Input Setup	Terminal Configu	ration: Differential
Voltage	😭 Settings 🛛 🔏 Calibr	Acquisition Mode	e: Continuous Samples
		Samples to read:	100
	Max 10	Rate (Hz): 1k	\rightarrow 1k=1000
	Min -10	Zatwierdzić konfig	gurację klawiszem OK .
Click the Add Channels button (+) to add more channels to the task.		erminal Configuration RSE 💽 Instom Scaling	
Timing Setting Acquisition Mode Continuous Samples	Samples to Read	Rate (Hz) 100 1k	

Odcinek pomiarowy =
$$\frac{\text{Samples to read}}{\text{Rate (Hz)}} = \frac{100}{1000} = 0,1\text{s}$$

Wstawić funkcję DQA Asisstant.

W oknie konfiguracyjnym wybrać opcję

Acquire Signals – Digital Input – Line Input

Z karty PCI6221 wybrać kanał cyfrowy **port0/line0**. Będzie on traktowany jako **wejście** cyfrowe.

Uwaga: okno konfiguracyjne pozostawiamy bez zmian: **Acquisition Mode: 1 Sample (on demand)**

Z palety funkcji **Programming/Structures** wybrać funkcję **Case Structure** i otoczyć ramką funkcję pomiaru sygnału analogowego.

Uwaga: kliknąć prawym klawiszem myszy na tunelu wyjściowym i zaznaczyć opcję **Use Default If Unwired**.

Z palety funkcji **Programming/Array** wybrać funkcję **Index Array** i wykonać połączenie linii danych jak na rysunku. Parametr 0 należy wygenerować jako stałą. Funkcja **Index Array** pobiera sygnał z **linii 0 portu 0.**

UWAGA: kolejne polecenia należy wykonać bardzo precyzyjnie. Pomyłka grozi uszkodzeniem karty !!!

1. Dostarczony przełącznik ustawić w pozycji "0" – pozycja środkowa.

2. Jeden z przewodów podłączyć do źródła napięcia +5V.

3. Drugi przewód podłączyć do linii oznaczonej jako **P0.0. Pod żadnym pozorem nie podłączać do końcówki GND !**

4. Uruchomić program. Ustawić pokrętłem generatora amplitudę i częstotliwość. Zmieniać położenie wyłącznika, pomiar sygnału analogowego jest uzależniony od stanu sygnału na wejściu **P0.0**. Jeżeli stan jest wysoki, wykres powinien być wyświetlany.

W kolejnym kroku program zostanie zmodyfikowany tak, aby sygnalizowany był stan przekroczenia amplitudy sygnału analogowego powyżej 1,5 V.

Zmodyfikować program do postaci jak na rysunku.

Wykorzystać funkcję **Tone measurements** z palety funkcji **Express/Signal Analysis**

Wstawić funkcję DAQ Assistant z opcją Generate Signals / Digital Output / Line Output

a następnie wybrać kanał **port0/line1**. Okno konfiguracyjne bez zmian. Uwaga: port0/line0 jest już zajęty !!!

Połączyć wynik funkcji ">" z wejściem **data**.

Uruchomić program.

Pomiar pojawia się po ustawieniu wysokiego stanu na wejściu P0.0, zaś linia P0.1 będzie świecić, gdy amplituda sygnału analogowego będzie większa niż 1.5V

