

Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA

Wirtualne przyrządy pomiarowe

Zastosowanie LabVIEW Signal Express do pomiaru sygnałałów napięciowych

dr inż. Roland PAWLICZEK

Wprowadzenie do mechatroniki

Cel zajęć:

- Zapoznanie się ze strukturą układu pomiarowego oraz ideą "Przyrządu wirtualnego".
- Nabycie praktycznych umiejętności budowy toru pomiaru sygnału analogowego i oprogramowanie wizualizacji wyników pomiarów.

Plan zajęć:

- Struktura układu pomiarowego.
- Przyrząd wirtualny, programowanie graficzne
- BNC2120 układ pomiaru sygnału analogowego.
- Budowa aplikacji do pomiaru i prezentacji wyników pomiaru Signal Express.
- Przeprowadzenie pomiaru, identyfikacja wyników pomiaru: struktura częstotliwościowa sygnału.
- Ilustracja podstawowych elementów przetwarzania danych: zjawisko aliasingu, zakłócenia.

Struktura układu pomiarowego

- **Przetwornik**: czujnik, którego głównym zadaniem jest zamiana mierzonej wielkości fizycznej na sygnał elektryczny.
- **Procesor**: układ cyfrowy filtrujący zakłócenia i wzmacniający sygnał.
- **Rejestrator**: zapisuje i wyświetla informacje z procesora.

Idea wirtualnego instrumentu

Definicja:

Instrument wirtualny składa się z komputera przemysłowego lub stacji roboczej wyposażonej w odpowiednie aplikacje, karty pomiarowe i sterowniki spełniające razem funkcje tradycyjnych urządzeń.

Idea wirtualnego instrumentu

CompactDAQ

Interfejsy komunikacyjne

Do komunikacji z komputerem można używać różnych typów urządzeń peryferyjnych.

Coraz częściej wykorzystuje się urządenia połączone z komputerem za pomocą portów USB.

- DAQ Data AcQuizition boards → karty pomiarowe z wejściami i wyjściami analogowymi i cyfrowymi
- PXI PCI eXtensions for Instrumentation (1998), platforma modułowa bazująca na komputerach klasy PC do prowadzenia pomiarów i wysyłania sygnałów

sterujących pracą urządzeń

- GPIB General Purpose Interface Bus – wykorzystywane są typowe urządzenia pomiarowe jako źródło danych do analizy
- *IMAQ kamery cyfrowe.*

Interfejsy komunikacyjne

- Dobór karty pomiarowej powinien być poprzedzony analizą procesu pod względem liczby sygnałów wejściowych, ich rodzaju (analogowe lub cyfrowe, standard TTL itp.), czy mają być wstępnie przetworzone (filtrowanie i wzmocnienie) oraz sygnałów wyjściowych (sterujących).
- Producenci oferują przewodniki step-by-step, aby wybrać właściwe rozwiazanie

Compact DAQ (z podłączeniem do portu USB):szereg modułów kondycjonujących sygnały w różnego rodzaju czujników (napięciowe, prądowe, odkształcenia z tensometrów, akcelerometry, sygnały dźwiekowe...)

Idea wirtualnego instrumentu

Systemy wizyjne: zastosowanie analizy obrazu do kontroli procesów.

Programowanie graficzne

Laboratory Virtual Instrument Engineering Workbench Panel Czołowy (Front Panel) - Panel czołowy jest płytą czołową urządzenia

- Kontrolki Controls (wprowadzanie danych)
- Wyświetlacze Indicators (wyświetlanie rezultatów)
- inne elementy (dekoracje, rysunki, teksty)

Programowanie graficzne

Schemat Blokowy (Block Diagram) (Kod graficzny aplikacji)

- ikony połączone liniami
- *pętle struktury, funkcje, podprogramy*
- inne elementy (dekoracje, rysunki, teksty)

Pomiar sygnału analogowego

Akwizycja sygnału analogowego

- Technika komputerowa akceptuje tylko sygnały elektryczne.
- Sygnałmusi być transformowany do postaci "cyfrowej".
- Próbkowanie:

10 próbek/s = 10 punktów na 1 sek. → 10 Hz

Rozdzielczość pomiarów: Dla karty DAQ 16-bit.

$$\frac{10V - (-10V)}{2^{16}} = 305 \mu V$$

Zadanie: zbudować tor pomiaru sygnału napięciowego z generatora i utworzyć program do akwizycji i prezentacji wyników.

Oprzyrządowanie:

Panel BNC 2120

1. Uruchomić program Signal Express

(Wszystkie programy/National Instruments/LabVIEW Signal Express).

2. Wybrać opcję Empty LabVIEW Signal Express project

Okno programu:

Add Step	
@Pin	0 🗒
诊 View All Steps	~
⊞ Generate Signals	
🗉 Analysis	
⊞ Time-Domain Measure	ments
🗉 Frequency-Domain Me	easurements
🔛 Octave Analysis	
🔤 Sound Quality	
Power Spectrum	
200m Power Spect	trum

Analiza spektralna sygnału (Power Spectrum)

Wybrać opcję **Add Step**, a następnie **Analysis / Frequency-Domain Meas.** / **Power Spectrum**

Uruchomić pomiar (RUN), zmieniać parametry zakładki **Configuration** i obserwować zmiany wykresu PSD na podglądzie.

Ustawić pokrętło częstotliwości paneli BNC2120 w lewe skrajne położenie. Wykres spektrum powinien wykazywać pik w okolicy 100 Hz.

Zwiększać powoli częstotliwość sygnału i obserwować wykres spektrum sygnału.

Jakie są obserwacje?

Analiza sygnału:

Korzystając z opcji Add Step i funkcji Analysis / Time-Domain Meas. wykonać:

- 1. Histogram sygnału (aktywować opcję *Bin value in percent*)
- 2. Analizę statystyczną: maksimum, minimum, średnia (mean), odchylenie standardowe (standard deviation)

OBSERWACJE:

Zmieniać wartość amplitudy i częstotliwości sygnału obserwując jednocześnie widmo sygnału, histogram i parametry statystyczne.

Panel BNC 2120

Za pomocą drugiego przewodu BNC-BNC połączyć wyjście generatora z wejściem analogowym AI5

Drugi sygnał z generatora ma kształt impulsu prostokątnego Lo=0 Hi=5 [v]. Możliwa jest tylko zmiana częstotliwości synchronicznie z sygnałem sinus.

Dla kroku **DAQmx Acquire** w zakładce Step Setup kliknąć znak **+**. Wybrać opcję **Voltage** oraz wskazać wolny kanał np. **ai5**.

Ustawić parametr Terminal Configuration: RSE

W danych wyjściowych kroku **DAQmx Acquire** pojawi się dodatkowy strumień danych, który można wykorzystywać w kolejnych krokach analogicznie jak dane z kanału **ai4**.

Krok Power Spectrum

Analiza sygnału:

Za blokiem *Power Spectrum* wstawić funkcję *Processing/Analog Signals/Formula* i zdefiniować sumę dla dwóch zmierzonych sygnałów.

Wstawić wykres sumy sygnałów do już istniejącego wykresu czasowego.

6 -	7- MANNA ATAM			
9 5 -		~~~~~	WW	ww
Imput variable 0: Imput variable 0: Voltage - Dev 1_ai4 x0 Alias 0 Input variable 1: Voltage - Dev 1_ai5 x1 Alias 1 Input variable 2: x2 Alias 2 Enable 3 x3 Alias 3 Deperation Setup Formula valid				
3- 2- 0 10m 20m 30m 40m 50m 60m 70m 80m 90m 100 Input variable 0: 1 1 1 1 100 Alias 0 2 1 1 1 1 100 Alias 1 2 1 1 1 1 1 1 1 2 1		1000 J		
3 2 0 10m 20m 30m 40m 50m 60m 70m 80m 90m 100 Input variable 0: ♥♥ Voltage - Dev1_ai4 ▼ x0 Alias 0 2 Enable 1 Input variable 1: ♥♥ Voltage - Dev1_ai5 ▼ x1 Alias 1 2 Enable 2 x2 Alias 2 Enable 3 x3 Alias 3 2 Operation Setup Formula = x0+x1 valid	mannan	min	m	when
2-1 0 10m 20m 30m 40m 50m 60m 70m 80m 90m 100 Input variable 0: ₩ Voltage - Dev 1_ai4 ▼ x0 Alias 0 2 Enable 1 Input variable 1: ₩ Voltage - Dev 1_ai5 ▼ x1 Alias 1 2 Enable 2 x2 Alias 2 2 Enable 3 x3 Alias 3 2 Operation Setup Formula = x0+x1 valid ✓ Ignore start time	3		~~~	n
Input variable 0: Voltage - Dev1_ai4 Enable 1 Input variable 1: Voltage - Dev1_ai5 Enable 2 Enable 3 Deperation Setup Formula = x0+x1 valid valid Input variable 1: Voltage - Dev1_ai5 x1 Alias 1 x2 Alias 2 x3 Alias 3 Valid valid Valid	2- 0 10m 20m 30m 40m 50r	n 60m 70	m 80m	90m 100r
Input variable 0: Voltage - Dev 1_ai4 Valias 0 Enable 1 Input variable 1: Voltage - Dev 1_ai5 Valias 1 Enable 2 X2 Alias 2 Enable 3 X3 Alias 3 Operation Setup Formula = x0+x1 Valid Ignore start time				
Enable 1 Input variable 1: Voltage - Dev1_ai5 x1 Alias 1 Enable 2 x2 Alias 2 Enable 3 x3 Alias 3 Operation Setup Formula Formula valid Ignore start time valid	Input variable 0: 🎦 Voltage - D	ev1_ai4 🔻	x0	Alias 0
Enable 1 Input variable 1: Example Voltage - Dev1_ai5 X1 Alias 1 Enable 2 X2 Alias 2 Enable 3 X3 Alias 3 Deperation Setup Formula = x0+x1 valid				
Enable 2 x2 Alias 2 Enable 3 x3 Alias 3 Operation Setup Formula x3 Alias 3 = x0+x1 valid ✓ Ignore start time valid	Enable 1 Input variable 1: [] Voltage - D	ev1_ai5 🔻	×1	Alias 1
Enable 3 x3 Alias 3 Operation Setup Formula Formula valid ✓ Ignore start time	Enable 2		x2	Alias 2
Enable 3 x3 Alias 3 Operation Setup Formula = x0+x1 valid ✓ Ignore start time Valid				
Operation Setup Formula = x0+x1 ✓ Ignore start time	_ Enable 3		x3	Alias 3
Formula = x0+x1 ✓ Ignore start time	Operation Setup			
☐ Ignore start time	E			valid
✓ Ignore start time	Formula			valu
	Formula = x0+x1		_	

Generacja raportu:

Należy przełączyć ekran na zakładkę *Project Documentation*, a następnie przeciągnąć w obszar raportu wykresy i informacje, które mają być zachowane. Można jednocześnie dopisać komentarze.

😉 Untitled 1 * - Signa	alExpress				
<u>File E</u> dit <u>V</u> iew <u>T</u> ools	Add <u>S</u> tep <u>O</u> pe	rate <u>Wi</u> ndow Do	cumentation <u>H</u> elp	I	
🕤 Add Step 📕 Stop 👻	\varTheta Record 💀	Error List			
🔁 Project	→ 쿠 X	ିଙ୍କ Step Setup	📷 Data View 🕄	Recording Options	🗥 Project Documentation 🕻
Monitor / Record	~	🚖 Print Document	tation A Selec	tFont 🖹 🗄	
Running		20-	Print Docur	nentation	

Aby zapisać raport należy wykonać **wydruk** (*File/Print*) lub wykorzystać zakładkę *Print Dokumentation*. Można również wyeksportować raport do formatu HTML (raport zostanie przygotowany w formacie dla przeglądarki internetowej).

Generacja raportu:

Aby wstawić elementy do raportu należy przeciągnąć je ze skryptu do obszaru raportu. Dodatkowo prawy klawisz myszy umożliwia otwarcie podręcznego menu z funkcjami.

Generacja raportu:

Sprawozdanie:

Przygotować raport:

- 1. Zapisać tytuł ćwiczenia oraz skład osobowy grupy.
- 2. Wprowadzić wykres przebiegów czasowych sygnałów z kanałów ai4, ai5 oraz sumy sygnałów, opisać co przedstawiają.
- 3. Wstawić do raportu wykresy widma sygnału (Power Spectrum) i opisać różnice.
- 4. Wstawić wykresy histogramów jako oddzielne rysunki dla każdego kanału i opisać.
- 5. Wykonać wydruk PDF lub wygenerować stronę www.
- 6. Przesłać pliki jako sprawozdanie.