
6-Hour Hands-On

Introduction to LabVIEW

© National Instruments Corporation 1 Introduction to LabVIEW Hands-On

Course Goals

• Become comfortable with the LabVIEW environment
and data flow execution

• Ability to use LabVIEW to solve problems
• LabVIEW Concepts

– Acquiring, saving and loading data
– Find and use math and complex analysis functions
– Work with data types, such as arrays and clusters
– Displaying and printing results

This is a list of the objectives of the course.

This course prepares you to do the following:

• Use LabVIEW to create applications.

• Understand front panels, block diagrams, and icons and connector panes.

• Use built-in LabVIEW functions.

• Create and save programs in LabVIEW so you can use them as subroutines.

• Create applications that use plug-in DAQ devices.

This course does not describe any of the following:

• Programming theory

• Every built-in LabVIEW function or object

• Analog-to-digital (A/D) theory

NI does provide free reference materials on the above topics on ni.com.

The LabVIEW Help is also very helpful:

LabVIEW»Help»Search the LabVIEW Help…

Introduction to LabVIEW Hands-On 2 ni.com

The Virtual Instrumentation Approach

Virtual Instrumentation

For more than 25 years, National Instruments has revolutionized the way engineers and
scientists in industry, government, and academia approach measurement and
automation. Leveraging PCs and commercial technologies, virtual instrumentation
increases productivity and lowers costs for test, control, and design applications
through easy-to-integrate software, such as NI LabVIEW, and modular measurement
and control hardware for PXI, PCI, USB, and Ethernet.

With virtual instrumentation, engineers use graphical programming software to create
user-defined solutions that meet their specific needs, which is a great alternative to
proprietary, fixed functionality traditional instruments. Additionally, virtual
instrumentation capitalizes on the ever-increasing performance of personal computers.
For example, in test, measurement, and control, engineers have used virtual
instrumentation to downsize automated test equipment (ATE) while experiencing up to
a 10 times increase in productivity gains at a fraction of the cost of traditional
instrument solutions. Last year 25,000 companies in 90 countries invested in more than
6 million virtual instrumentation channels from National Instruments.

© National Instruments Corporation 3 Introduction to LabVIEW Hands-On

LabVIEW Graphical Development System
• Graphical Programming Environment
• Compile code for multiple OS and devices
• Useful in a broad range of applications

National Instruments LabVIEW is an industry-leading software tool for designing test,
measurement, and control systems. Since its introduction in 1986, engineers and
scientists worldwide who have relied on NI LabVIEW graphical development for
projects throughout the product design cycle have gained improved quality, shorter time
to market, and greater engineering and manufacturing efficiency. By using the
integrated LabVIEW environment to interface with real-world signals, analyze data for
meaningful information, and share results, you can boost productivity throughout your
organization. Because LabVIEW has the flexibility of a programming language
combined with built-in tools designed specifically for test, measurement, and control,
you can create applications that range from simple temperature monitoring to
sophisticated simulation and control systems. No matter what your project is, LabVIEW
has the tools necessary to make you successful quickly.

Introduction to LabVIEW Hands-On 4 ni.com

Virtual Instrumentation Applications
• Design

– Signal and Image Processing
– Embedded System Programming

• (PC, DSP, FPGA, Microcontroller)
– Simulation and Prototyping
– And more…

• Control
– Automatic Controls and Dynamic Systems
– Mechatronics and Robotics
– And more…

• Measurements
– Circuits and Electronics
– Measurements and Instrumentation
– And more…

Design Prototype Deploy

A single graphical development platform

Virtual Instrumentation Applications

Virtual instrumentation is applicable in many different types of applications, starting from design
to prototyping and deployment. The LabVIEW platform provides specific tools and models to
solve specific applications ranging from designing signal processing algorithms to making
voltage measurements and can target any number of platforms from the desktop to embedded
devices – with an intuitive, powerful graphical paradigm.

With version 8, LabVIEW scales from design and development on PCs to several embedded
targets from ruggedized toaster size prototypes to embedded systems on chips. LabVIEW
streamlines system design with a single graphical development platform. In doing so,
LabVIEW encompasses better management of distributed, networked systems because as the
targets for LabVIEW grow varied and embedded, you will need to be able to more easily
distribute and communicate between various LabVIEW code pieces in your system.

© National Instruments Corporation 5 Introduction to LabVIEW Hands-On

The NI Approach – Integrated Hardware Platforms

High-Speed
Digitizers

High-Resolution
Digitizers and DMMs

Multifunction
Data Acquisition

Dynamic
Signal Acquisition

Digital I/OInstrument
Control

Counter/
Timers

Machine
Vision

Motion
Control

Distributed I/O and
Embedded Control

Laptop PC PDADesktop PCPXI Modular Instrumentation

Signal Conditioning
and Switching

Unit Under Test

Integrated Hardware Platforms

A virtual instrument consists of an industry-standard computer or workstation equipped
with powerful application software, cost-effective hardware such as plug-in boards, and
driver software, which together perform the functions of traditional instruments.

Virtual instruments represent a fundamental shift from traditional hardware-centered
instrumentation systems to software-centered systems that exploit the computing power,
productivity, display, and connectivity capabilities of popular desktop computers and
workstations.

Although the PC and integrated circuit technology have experienced significant
advances in the last two decades, software truly offers the flexibility to build on this
powerful hardware foundation to create virtual instruments, providing better ways to
innovate and significantly reduce cost. With virtual instruments, engineers and scientists
build measurement and automation systems that suit their needs exactly (user-defined)
instead of being limited by traditional fixed-function instruments (vendor-defined).

Introduction to LabVIEW Hands-On 6 ni.com

Section I – LabVIEW Environment
A. Getting Data into your Computer

• Data Acquisition Devices
– NI-DAQ
– Simulated Data Acquisition
– Sound Card

B. LabVIEW Environment
• Front Panel / Block Diagram
• Toolbar /Tools Palette

C. Components of a LabVIEW Application
• Creating a VI
• Data Flow Execution

D. Additional Help
• Finding Functions
• Tips for Working in LabVIEW

© National Instruments Corporation 7 Introduction to LabVIEW Hands-On

A. Setting Up Your Hardware

• Data Acquisition Device (DAQ)
– Actual USB, PCI, or PXI Device
– Configured in MAX

• Simulated Data Acquisition Device (DAQ)
– Software simulated at the driver level
– Configured in MAX

• Sound Card
– Built into most computers

Track ATrack A

Track BTrack B

Track CTrack C

This LabVIEW course is designed for audiences with or without access to National
Instruments hardware.

Each exercise is divided into three tracks, A, B, and C:

Track A is designed to be used with hardware supported by the National Instruments
DAQmx driver. This includes most USB, PCI, and PXI data acquisition devices with
analog input. Some signal conditioning and excitation is required to use a microphone
with a DAQ device. (Some sensors, like microphones, require external power to work
(excitation)).

Track B is designed to be used with no hardware. Hardware can be simulated with the
NI-DAQmx Driver Version 7.5 and newer. A simulated NI-DAQmx device is a replica
of a device created using the NI-DAQmx Simulated Device option in the Create New
menu of MAX for the purpose of operating a function or program without hardware. An
NI-DAQmx simulated device behaves similar to a real device. Its driver is loaded, and
programs using it are fully verified.

Track C is designed to be used with a standard sound card and microphone. LabVIEW
includes simple VIs for analog input and analog output using the soundcard built into
many PCs. (This is very convenient for laptops because the soundcard and microphone
are usually already built-in.)

Introduction to LabVIEW Hands-On 8 ni.com

Track A – NI Data Acqusion with Microphone: USB-6009 with Microphone & LED
Suggested Hardware:

The following schematic was drawn with Multisim, a widely used SPICE schematic capture and
simulation tool. Visit http://www.electronicsworkbench.com for more info.

Setting-Up Your Hardware for Your Selected Track

RadioShack220 Ohm Resistor1

RadioShackElectret Microphone270-0921
RadioShack100 Ohm Resistor1

RadioShackLight Emitting Diode (LED)276-3071

National InstrumentsLow-cost USB DAQ779321-221
SupplierDescriptionPart NumberQty

Track B – Simulated NI Data Acqusion: NI-DAQ Software version 8.0 or newer

Track C – Third-party Soundcard: Soundcard and Microphone
Suggested Hardware:

* Laptops often have a built-in microphone (no plug-in microphone is required)

RadioShackStandard Plug-in PC
Microphone*

1
SupplierDescriptionPart NumberQty

© National Instruments Corporation 9 Introduction to LabVIEW Hands-On

What type of device should I use?

xxx—Triggering

x

AC/DC
2–4

16–80
—

14–18 bit
250 K–1.2 Ms/s

NI PCI DAQ

somexxPortable

20kS/s–2 GS/s10–200 KS/s8–44 KS/sAI Bandwidth

x

AC/DC
0
2

12–24 bit

Instruments*

x

AC/DC
1–2
8–16

12–16 bit

NI USB DAQ

—Calibrated

ACAC or DC
2AO Channels
2AI Channels

12–16 bitAccuracy

Sound Card*

* The above table may not be representative of all device variations that exist in each category

What type of device should I use?
There are many types of data acquisition and control devices on the market. A few have been
highlighted above. The trade-off usually falls between sampling rate (samples/second),
resolution (bits), number of channels, and data transfer rate (usually limited by “bus” type:
USB, PCI, PXI, etc.). Multifunction DAQ (data acqusion) devices are ideal because they can
be used in a wide range of applications.

USB-6008 & USB-6009 Low-Cost USB DAQ
The National Instruments USB-6009 provides basic
data acquisition functionality for applications such as
simple data logging, portable measurements, and
academic lab experiments. The NI USB-6008 and NI
USB-6009 are ideal for students. Create your own
measurement application by programming the NI
USB-6009 using LabVIEW and NI-DAQmx driver
software for Windows. For Mac OS X and Linux
users, download and use the NI-DAQmx Base driver.

NI USB-6009 Specifications:
• Eight 14-bit analog inputs
• 12 digital I/O lines

• 2 analog outputs
• 1 counter

http://www.ni.com/daq/

Introduction to LabVIEW Hands-On 10 ni.com

What is MAX?
• MAX stands for Measurement & Automation Explorer.
• MAX configures and organizes all your National Instruments DAQ,

PCI/PXI instruments, GPIB, IMAQ, IVI, Motion, VISA, and VXI devices.
• Used for configuring and testing devices.

Icon Found onIcon Found on

Windows DesktopWindows Desktop

The next level of software we are concerned with is called Measurement & Automation
Explorer (MAX). MAX is a software interface that gives you access to all of your
National Instruments DAQ, GPIB, IMAQ, IVI, Motion, VISA, and VXI devices. The
shortcut to MAX will be placed on your desktop after installation. A picture of the icon
is shown above. MAX is mainly used to configure and test your National Instruments
hardware, but it does offer other functionality such as checking to see if you have the
latest version of NI-DAQ installed. When you run an application using NI-DAQmx, the
software reads the MAX configuration to determine the devices you have configured.
Therefore, you must configure DAQ devices first with MAX.

The functionality of MAX is broken into seven categories:
• Data Neighborhood
• Devices and Interfaces
• IVI Instruments
• Scales
• Historical Data
• Software
• VI Logger Tasks

For this course, we will focus on Data Neighborhood, Devices and Interfaces, Scales,
and Software. We will now step through each one of these categories and learn about
the functionality each one offers.

© National Instruments Corporation 11 Introduction to LabVIEW Hands-On

Exercise 1.1 – Testing Your Device (Track A)

In this exercise you will use Measurement and Automation Explorer (MAX) to test
your NI USB-6009 DAQ device.

1. Launch MAX by double-clicking the icon on the desktop or by selecting
Start»Programs»National Instruments»Measurement & Automation.

2. Expand the Devices and Interfaces section to view the installed National
Instruments devices. MAX displays the National Instruments hardware and software
in the computer.

3. Expand the NI-DAQmx Devices section to view the installed hardware that is
compatible with NI-DAQmx. The device number appears in quotes following the
device name. The data acquisition VIs use this device number to determine which
device performs DAQ operations. You will see your hardware listed as NI USB-
6009: “Dev1”.

4. Perform a self-test on the device by right-clicking it in the configuration tree and
choosing Self-Test or clicking “Self-Test” along the top of the window. This tests
the system resources assigned to the device. The device should pass the test because
it is already configured.

5. Check the pinout for your device. Right-click the device in the configuration tree
and select Device Pinouts or click “Device Pinouts” along the top of the center
window.

6. Open the test panels. Right-click the device in the configuration tree and select Test
Panels… or click “Test Panels…” along the top of the center window. The test
panels allow you to test the available functionality of your device, analog
input/output, digital input/output, and counter input/output without doing any
programming.

7. On the Analog Input tab of the test panels, change Mode to “Continuous” and
Rate to 10,000 Hz. Click “Start” and hum or whistle into your microphone to
observe the signal that is plotted. Click “Finish” when you are done.

8. On the Digital I/O tab notice that initially the port is configured to be all input.
Observe under Select State the LEDs that represent the state of the input lines.
Click the “All Output” button under Select Direction. Notice you now have
switches under Select State to specify the output state of the different lines. Toggle
line 0 and watch the LED light up. Click “Close” to close the test panels.

9. Close MAX.

Introduction to LabVIEW Hands-On 12 ni.com

(End of Exercise)

© National Instruments Corporation 13 Introduction to LabVIEW Hands-On

Exercise 1.1 – Setting Up Your Device (Track B)

In this exercise you will use Measurement and Automation Explorer (MAX) to
configure a simulated DAQ device.

1. Launch MAX by double-clicking the icon on the desktop or by selecting
Start»Programs»National Instruments»Measurement & Automation.

2. Expand the Devices and Interfaces section to view the installed National
Instruments devices. MAX displays the National Instruments hardware and software
in the computer. The device number appears in quotes following the device name.
The data acquisition VIs use this device number to determine which device
performs DAQ operations.

3. Create a simulated DAQ device for use later in this course. Simulated devices are a
powerful tool for development without having hardware physically installed in your
computer. Right-click Devices and Interfaces and select Create New…»NI-
DAQmx Simulated Device. Click “Finish”.

4. Expand the M Series DAQ section. Select PCI-6220 or any other PCI device of
your choice. Click “OK”.

5. The NI-DAQmx Devices folder will expand and you will see a new entry for PCI-
6220: “Dev1”. You have now created a simulated device!

6. Perform a self-test on the device by right-clicking it in the configuration tree and
choosing Self-Test or clicking “Self-Test” along the top of the window. This tests
the system resources assigned to the device. The device should pass the test because
it is already configured.

7. Check the pinout for your device. Right-click the device in the configuration tree
and select Device Pinouts or click “Device Pinouts” along the top of the center
window.

8. Open the test panels. Right-click the device in the configuration tree and select Test
Panels… or click “Test Panels…” along the top of the center window. The test
panels allow you to test the available functionality of your device, analog
input/output, digital input/output, and counter input/output without doing any
programming.

9. On the Analog Input tab of the test panels, change Mode to “Continuous”. Click
“Start” and observe the signal that is plotted. Click “Stop” when you are done.

Introduction to LabVIEW Hands-On 14 ni.com

10. On the Digital I/O tab notice that initially the port is configured to be all input.
Observe under Select State the LEDs that represent the state of the input lines.
Click the “All Output” button under Select Direction. Notice you now have
switches under Select State to specify the output state of the different lines. Click
“Close” to close the test panels.

11. Close MAX.

(End of Exercise)

© National Instruments Corporation 15 Introduction to LabVIEW Hands-On

Exercise 1.1 – Setting Up Your Device (Track C)

In this exercise, you will use Windows utilities to verify your sound card and prepare it
for use with a microphone.

1. Prepare your microphone for use. Double-click the volume control icon on the task
bar to open up the configuration window. The sound configuration window can also
be found from the Windows Control Panel: Start Menu»Control Panel»Sounds
and Audio Devices»Advanced.

2. If you do not see a microphone section, go to Options»Properties»Recording and
place a checkmark in the box next to Microphone. This will display the
Microphone volume control. Click “OK”.

3. Uncheck the Mute box if it is not already unchecked. Make sure that the volume is
turned up.

4. Close the volume control configuration window.

5. Open the Sound Recorder by selecting
Start»Programs»Accessories»Entertainment»Sound Recorder.

6. Click the record button and speak into your microphone. Notice how the sound
signal is displayed in the Sound Recorder.

7. Click stop and close the Sound Recorder without saving changes when you are
finished.

Uncheck Mute

(End of Exercise)

Introduction to LabVIEW Hands-On 16 ni.com

LabVIEW

LabVIEW is a graphical programming language that uses icons instead of lines of
text to create applications. In contrast to text-based programming languages, where
instructions determine program execution, LabVIEW uses dataflow programming,
where the flow of data determines execution order.

You can purchase several add-on software toolkits for developing specialized
applications. All the toolkits integrate seamlessly in LabVIEW. Refer to the
National Instruments Web site for more information about these toolkits.

LabVIEW also includes several wizards to help you quickly configure your DAQ
devices and computer-based instruments and build applications.

LabVIEW Example Finder

LabVIEW includes hundreds of example VIs you can use and incorporate into VIs
that you create. In addition to the example VIs that ship with LabVIEW, you also
can access hundreds of example VIs on the NI Developer Zone (zone.ni.com).
You can modify an example VI to fit an application, or you can copy and paste
from one or more examples into a VI that you create.

Start»All Programs»National Instruments LabVIEW

Startup Screen:

Start from a Blank VI:
New»Blank VI

Start from an Example:
Examples»Find

Examples…

»

or

Open and Run LabVIEW

© National Instruments Corporation 17 Introduction to LabVIEW Hands-On

Each VI has 2 Windows

Front Panel
• User Interface (UI)

– Controls = Inputs
– Indicators = Outputs

Block Diagram
• Graphical Code

– Data travels on wires from
controls through functions to
indicators

– Blocks execute by Dataflow

LabVIEW Programs Are Called Virtual Instruments (VIs)

LabVIEW programs are called virtual instruments (VIs).

Controls are inputs and indicators are outputs.

Each VI contains three main parts:

• Front Panel – How the user interacts with the VI.

• Block Diagram – The code that controls the program.

• Icon/Connector – Means of connecting a VI to other VIs.

In LabVIEW, you build a user interface by using a set of tools and objects. The user
interface is known as the front panel. You then add code using graphical representations
of functions to control the front panel objects. The block diagram contains this code. In
some ways, the block diagram resembles a flowchart.

Users interact with the Front Panel when the program is running. Users can control the
program, change inputs, and see data updated in real time. Controls are used for inputs
such as, adjusting a slide control to set an alarm value, turning a switch on or off, or to
stop a program. Indicators are used as outputs. Thermometers, lights, and other
indicators display output values from the program. These may include data, program
states, and other information.

Every front panel control or indicator has a corresponding terminal on the block
diagram. When a VI is run, values from controls flow through the block diagram, where
they are used in the functions on the diagram, and the results are passed into other
functions or indicators through wires.

Introduction to LabVIEW Hands-On 18 ni.com

Controls Palette
(Controls & Indicators)

(Place items on the Front Panel Window)

Indicator:
Numeric Slide

Control:
Numeric

Customize
Palette
View

Use the Controls palette to place controls and indicators on the front panel. The
Controls palette is available only on the front panel. To view the palette, select
Window»Show Controls Palette. You also can display the Controls palette by right-
clicking an open area on the front panel. Tack down the Controls palette by clicking the
pushpin on the top left corner of the palette.

© National Instruments Corporation 19 Introduction to LabVIEW Hands-On

Functions (and Structures) Palette

(Place items on the
Block Diagram Window)

Structure:
While Loop

Use the Functions palette to build the block diagram. The Functions palette is available
only on the block diagram. To view the palette, select Window»Show Functions
Palette. You also can display the Functions palette by right-clicking an open area on
the block diagram. Tack down the Functions palette by clicking the pushpin on the top
left corner of the palette.

Introduction to LabVIEW Hands-On 20 ni.com

• Recommended: Automatic Selection Tool
• Tools to operate and modify both front panel and

block diagram objects

Operating Tool

Positioning/Resizing Tool

Labeling Tool

Wiring Tool

Tools Palette

Automatic Selection Tool

Automatically chooses among the following tools:

If automatic tool selection is enabled and you move the cursor over objects on the front
panel or block diagram, LabVIEW automatically selects the corresponding tool from the
Tools palette. Toggle automatic tool selection by clicking the Automatic Tool
Selection button in the Tools palette.

Use the Operating tool to change the values of a control or select the text within a
control.

Use the Positioning tool to select, move, or resize objects. The Positioning tool changes
shape when it moves over a corner of a resizable object.

Use the Labeling tool to edit text and create free labels. The Labeling tool changes to a
cursor when you create free labels.

Use the Wiring tool to wire objects together on the block diagram.

Other important tools:

© National Instruments Corporation 21 Introduction to LabVIEW Hands-On

Run Button

Continuous Run Button

Abort Execution

Execution Highlighting Button

Additional Buttons on
the Diagram Toolbar

Status Toolbar

Retain Wire Values Button

Step Function Buttons

• Click the Run button to run the VI. While the VI runs, the Run button appears with a
black arrow if the VI is a top-level VI, meaning it has no callers and therefore is not a
subVI.

• Click the Continuous Run button to run the VI until you abort or pause it. You also can
click the button again to disable continuous running.

• While the VI runs, the Abort Execution button appears. Click this button to stop the VI
immediately.

Note: Avoid using the Abort Execution button to stop a VI. Either let the VI complete its
data flow or design a method to stop the VI programmatically. By doing so, the VI is at a
known state. For example, place a button on the front panel that stops the VI when you
click it.

• Click the Pause button to pause a running VI. When you click the Pause button,
LabVIEW highlights on the block diagram the location where you paused execution. Click
the Pause button again to continue running the VI.

• Select the Text Settings pull-down menu to change the font settings for the VI, including
size, style, and color.

• Select the Align Objects pull-down menu to align objects along axes, including vertical,
top edge, left, and so on.

• Select the Distribute Objects pull-down menu to space objects evenly, including gaps,
compression, and so on.

• Select the Resize Objects pull-down menu to change the width and height of front panel
objects.

Introduction to LabVIEW Hands-On 22 ni.com

• Select the Reorder pull-down menu when you have objects that overlap each other
and you want to define which one is in front or back of another. Select one of the
objects with the Positioning tool and then select from Move Forward, Move
Backward, Move To Front, and Move To Back.

Note: The following items only appear on the block diagram toolbar.

• Click the Highlight Execution button to see the flow of data through the block
diagram. Click the button again to disable execution highlighting.

• Click Retain Wire Values button to save the wire values at each point in the flow
of execution so that when you place a probe on a wire, you can immediately obtain
the most recent value of the data that passed through the wire.

• Click the Step Into button to single-step into a loop, subVI, and so on. Single-
stepping through a VI steps through the VI node to node. Each node blinks to
denote when it is ready to execute. By stepping into the node, you are ready to
single-step inside the node.

• Click the Step Over button to step over a loop, subVI, and so on. By stepping over
the node, you execute the node without single-stepping through the node.

• Click the Step Out button to step out of a loop, subVI, and so on. By stepping out
of a node, you complete single-stepping through the node and go to the next node.

Additional Tools:

Retain Wire
Values

© National Instruments Corporation 23 Introduction to LabVIEW Hands-On

Block Diagram Window

Front Panel Window

Demonstration 1: Creating a VI

Input
Terminals

Output
Terminal

Boolean
Control

Graph
Indicator

When you create an object on the Front Panel, a terminal will be created on the Block
Diagram. These terminals give you access to the Front Panel objects from the Block
Diagram code.

Each terminal contains useful information about the Front Panel object it corresponds to.
For example, the color and symbols provide information about the data type. For
example: The dynamic data type is a polymorphic data type represented by dark blue
terminals. Boolean terminals are green with TF lettering.

In general, blue terminals should wire to blue terminals, green to green, and so on. This
is not a hard-and-fast rule; LabVIEW will allow a user to connect a blue terminal
(dynamic data) to an orange terminal (fractional value), for example. But in most cases,
look for a match in colors.

Controls have an arrow on the right side and have a thick border. Indicators have an
arrow on the left and a thin border. Logic rules apply to wiring in LabVIEW: Each wire
must have one (but only one) source (or control), and each wire may have multiple
destinations (or indicators).

Introduction to LabVIEW Hands-On 24 ni.com

• Block diagram execution
– Dependent on the flow of data
– Block diagram does NOT execute

left to right
• Node executes when data is

available to ALL input terminals
• Nodes supply data to all output

terminals when done

Dataflow Programming

LabVIEW follows a dataflow model for running VIs. A block diagram node executes
when all its inputs are available. When a node completes execution, it supplies data to
its output terminals and passes the output data to the next node in the dataflow path.
Visual Basic, C++, JAVA, and most other text-based programming languages follow a
control flow model of program execution. In control flow, the sequential order of
program elements determines the execution order of a program.

Consider the block diagram above. It adds two numbers and then multiplies by 2 from
the result of the addition. In this case, the block diagram executes from left to right, not
because the objects are placed in that order, but because one of the inputs of the
Multiply function is not valid until the Add function has finished executing and passed
the data to the Multiply function. Remember that a node executes only when data are
available at all of its input terminals, and it supplies data to its output terminals only
when it finishes execution. In the second piece of code, the Simulate Signal Express VI
receives input from the controls and passes its result to the Graph.

You may consider the add-multiply and the simulate signal code to co-exist on the same
block diagram in parallel. This means that they will both begin executing at the same
time and run independent of one another. If the computer running this code had multiple
processors, these two pieces of code could run independent of one another (each on its
own processor) without any additional coding.

© National Instruments Corporation 25 Introduction to LabVIEW Hands-On

Debugging Techniques
• Finding Errors

• Execution Highlighting

• Probes

Click on broken Run button.
Window showing error appears.

Click on Execution Highlighting button; data
flow is animated using bubbles. Values are
displayed on wires.

Right-click on wire to display probe and it shows
data as it flows through wire segment.

You can also select Probe tool from Tools
palette and click on wire.

When your VI is not executable, a broken arrow is displayed in the Run button in the
palette.

• Finding Errors: To list errors, click on the broken arrow. To locate the bad object,
click on the error message.

• Execution Highlighting: Animates the diagram and traces the flow of the data,
allowing you to view intermediate values. Click on the light bulb on the toolbar.

• Probe: Used to view values in arrays and clusters. Click on wires with the Probe
tool or right-click on the wire to set probes.

• Retain Wire Values: Used in conjunction with probes to view the values from the
last iteration of the program.

• Breakpoint: Set pauses at different locations on the diagram. Click on wires or
objects with the Breakpoint tool to set breakpoints.

Introduction to LabVIEW Hands-On 26 ni.com

Exercise 1.2 – Acquiring a Signal with DAQ (Track A)

Note: Before beginning this exercise, copy the Exercises and Solutions Folders to the
desktop of your computer.

Complete the following steps to create a VI that acquires data continuously from your
DAQ device.

1. Launch LabVIEW.

2. In the Getting Started window, click the New or VI from Template link to display
the New dialog box.

3. Open a data acquisition template. From the Create New list, select VI»From
Template»DAQ»Data Acquisition with NI-DAQmx.vi and click “OK”.

4. Display the block diagram by clicking it or by selecting Window»Show Block
Diagram. Read the instructions written there about how to complete the program.

5. Double-click the DAQ Assistant to launch the configuration wizard.

6. Configure an analog input operation.

a. Choose Analog Input»Voltage.

b. Choose Dev1 (USB-6009)»ai0 to acquire data on analog input channel 0 and
click “Finish.”

c. In the next window you define parameters of your analog input operation.
To choose an input range that works well with your microphone, on the settings
tab enter 2 Volts for the maximum and –2 Volts for the minimum. On the task
timing tab, choose “Continuous” for the acquisition mode and enter 10000 for
the rate. Leave all other choices set to their default values. Click “OK” to exit
the wizard.

7. Place the Filter Express VI to the right of the DAQ Assistant on the block diagram.
From the functions palette, select Express»Signal Analysis»Filter and place it on
the block diagram inside the while loop. When you bring up the functions palette,
press the small push pin in the upper left hand corner of the palette. This will tack
down the palette so that it doesn’t disappear. This step will be omitted in the
following exercises, but should be repeated. In the configuration window under
Filtering Type, choose “Highpass.” Under Cutoff Frequency, use a value of 300 Hz.
Click “OK.”

© National Instruments Corporation 27 Introduction to LabVIEW Hands-On

8. Make the following connections on the block diagram by hovering your mouse over the terminal
so that it becomes the wiring tool and clicking once on each of the terminals you wish to connect:

a. Connect the “Data” output terminal of the DAQ Assistant VI to the “Signal” input of the Filter
VI.

b. Create a graph indicator for the filtered signal by right-clicking on the “Filtered Signal” output
terminal and choose Create»Graph Indicator.

9. Return to the front panel by selecting Window»Show Front Panel or by pressing <Ctrl+E>.

10. Run your program by clicking the run button. Hum or whistle into the microphone to observe the
changing voltage on the graph.

11. Click stop once you are finished.

12. Save the VI as “Exercise 2 – Acquire.vi” in your Exercises folder and close it.

Note: The solution to this exercise is printed in the back of this manual.

Tip: You can place the DAQ
Assistant on your block diagram
from the Functions Palette. Right-
click the block diagram to open
the Functions Palette and go to
Express»Input to find it.

(End of Exercise)

Introduction to LabVIEW Hands-On 28 ni.com

Exercise 1.2 – Acquiring a Signal with DAQ (Track B)

Note: Before beginning this exercise, copy the Exercises and Solutions Folders to the
desktop

of your computer.

Complete the following steps to create a VI that acquires data continuously from your
simulated DAQ device.

1. Launch LabVIEW.

2. In the Getting Started window, click the New or VI from Template link to display
the New dialog box.

3. Open a data acquisition template. From the Create New list, select VI»From
Template»DAQ»Data Acquisition with NI-DAQmx.vi and click “OK”.

4. Display the block diagram by clicking it or by selecting Window»Show Block
Diagram. Read the instructions written there about how to complete the program.

5. Double-click the DAQ Assistant to launch the configuration wizard.

6. Configure an analog input operation.

a. Choose Analog Input»Voltage.

b. Choose Dev1 (PCI-6220)»ai0 to acquire data on analog input channel 0

and click “Finish.”

c. In the next window you define parameters of your analog input operation.

On the task timing tab, choose “Continuous” for the acquisition mode,

enter 1000 for samples to read, and 10000 for the rate. Leave all other
choices set to their default values. Click “OK” to exit the wizard.

7. On the block diagram, right-click the black arrow to the right of where it says “data.”
Choose Create»Graph Indicator from the right-click menu.

8. Return to the front panel by selecting Window»Show Front Panel or by pressing
<Ctrl+E>.

9. Run your program by clicking the run button. Observe the simulated sine wave on the
graph.

10. Click stop once you are finished.

11. Save the VI as “Exercise 2 – Acquire.vi” in the Exercises folder. Close the VI.

Notes:

• The solution to this exercise is printed in the back of this manual.

• You can place the DAQ Assistant on your block diagram from the Functions Palette.
Right-click the block diagram to open the Functions Palette and go to Express»Input
to find it. When you bring up the functions palette, press the small push pin in the
upper left hand corner of the palette. This will tack down the palette so that it doesn’t
disappear. This step will be omitted in the following exercises, but should be repeated.

© National Instruments Corporation 29 Introduction to LabVIEW Hands-On

(End of Exercise)
Introduction to LabVIEW Hands-On 30 ni.com

Exercise 1.2 – Acquiring a Signal with the Sound Card (Track C)

Note: Before beginning this exercise, copy the Exercises and Solutions Folders to
the desktop of your computer.

Complete the following steps to create a VI that acquires data from your sound card.

1. Launch LabVIEW.

2. In the Getting Started window, click the Blank VI link.

3. Display the block diagram by pressing <Ctrl+E> or selecting Window»Show Block
Diagram.

4. Place the Acquire Sound Express VI on the block diagram. Right-click to open the
functions palette and select Express»Input»Acquire Sound. Place the Express VI
on the block diagram.

5. In the configuration window under #Channels, select 1 from the drop-down list and
click “OK”.

6. Place the Filter Express VI to the right of the Acquire Signal VI on the block
diagram. From the functions palette, select Express»Signal Analysis»Filter and
place it on the block diagram. In the configuration window under Filtering Type,
choose “Highpass.” Under Cutoff Frequency, use a value of 300 Hz. Click “OK.”

7. Make the following connections on the block diagram by hovering your mouse over
the terminal so that it becomes the wiring tool and clicking once on each of the
terminals you wish to connect:

a. Connect the “Data” output terminal of the Acquire Signal VI to the “Signal” input
of the Filter VI.

b. Create a graph indicator for the filtered signal by right-clicking on the “Filtered
Signal” output terminal and choose Create»Graph Indicator.

8. Return to the front panel by pressing <Ctrl+E> or Window»Show Front Panel.

9. Run your program by clicking the run button. Hum or whistle into your microphone
and observe the data you acquire from your sound card.

10. Save the VI as “Exercise 1.2 – Acquire.vi” in the Exercises folder.

11. Close the VI.

Note: The solution to this exercise is printed in the back of this manual.

(End of Exercise)
© National Instruments Corporation 31 Introduction to LabVIEW Hands-On

Context Help Window
• Help»Show Context Help, press the <Ctrl+H> keys
• Hover cursor over object to update window

Additional Help
– Right-Click on the VI icon and

choose Help, or
– Choose “Detailed Help.” on

the context help window

The Context Help window displays basic information about LabVIEW objects when
you move the cursor over each object. Objects with context help information include
VIs, functions, constants, structures, palettes, properties, methods, events, and dialog
box components.

To display the Context Help window, select Help»Show Context Help, press the
<Ctrl+H> keys, or press the Show Context Help Window button in the toolbar

Connections displayed in Context Help:

Required – bold
Recommended – normal
Optional – dimmed

Additional Help
• VI, Function, & How-To Help is also available.

– Help» VI, Function, & How-To Help
– Right-click the VI icon and choose Help, or

– Choose “Detailed Help.” on the context help window.

• LabVIEW Help – reference style help

– Help»Search the LabVIEW Help…

Introduction to LabVIEW Hands-On 32 ni.com

Tips for Working in LabVIEW

• Keystroke Shortcuts
– <Ctrl+H> – Activate/Deactivate Context Help Window
– <Ctrl+B> – Remove Broken Wires From Block Diagram
– <Ctrl+E> – Toggle Between Front Panel and Block

Diagram
– <Ctrl+Z> – Undo (Also in Edit Menu)

• Tools»Options… – Set Preferences in LabVIEW
• VI Properties–Configure VI Appearance,
Documentation, etc.

LabVIEW has many keystroke shortcuts that make working easier. The most common
shortcuts are listed above.

While the Automatic Selection Tool is great for choosing the tool you would like to use
in LabVIEW, there are sometimes cases when you want manual control. Once the
Automatic Selection Tool is turned off, use the Tab key to toggle between the four most
common tools (Operate Value, Position/Size/Select, Edit Text, Set Color on Front Panel
and Operate Value, Position/Size/Select, Edit Text, Connect Wire on Block Diagram).
Once you are finished with the tool you choose, you can press <Shift+Tab> to turn the
Automatic Selection Tool back on.

In the Tools»Options… dialog, there are many configurable options for customizing
your Front Panel, Block Diagram, Colors, Printing, and much more.

Similar to the LabVIEW Options, you can configure VI specific properties by going to
File»VI Properties… There you can document the VI, change the appearance of the
window, and customize it in several other ways.

© National Instruments Corporation 33 Introduction to LabVIEW Hands-On

Section II – Elements of Typical Programs
A. Loops

• While Loop
• For Loop

B. Functions and SubVIs
• Types of Functions
• Creating Custom Functions (SubVI)
• Functions Palette & Searching

C. Decision Making and File IO
• Case Structure
• Select (simple If statement)
• File I/O

© National Instruments Corporation 35 Introduction to LabVIEW Hands-On

Loops

•While Loops
– i terminal counts iteration
– Always runs at least once
– Runs until stop condition is

met

• For Loops
– i terminal counts iterations
– Run according to input N of

count terminal

While LoopWhile Loop

For LoopFor Loop

Both the While and For Loops are located on the Functions»Structures palette. The
For Loop differs from the While Loop in that the For Loop executes a set number of
times. A While Loop stops executing the subdiagram only if the value at the conditional
terminal exists.

While Loops

Similar to a Do Loop or a Repeat-Until Loop in text-based programming languages, a
While Loop, shown at the top right, executes a subdiagram until a condition is met. The
While Loop executes the sub diagram until the conditional terminal, an input terminal,
receives a specific Boolean value. The default behavior and appearance of the
conditional terminal is Stop If True. When a conditional terminal is Stop If True, the
While Loop executes its subdiagram until the conditional terminal receives a TRUE
value. The iteration terminal (an output terminal), shown at left, contains the number of
completed iterations. The iteration count always starts at zero. During the first iteration,
the iteration terminal returns 0.

For Loops

A For Loop, shown above, executes a subdiagram a set number of times. The value in
the count terminal (an input terminal) represented by the N, indicates how many times to
repeat the subdiagram. The iteration terminal (an output terminal), shown at left,
contains the number of completed iterations. The iteration count always starts at zero.
During the first iteration, the iteration terminal returns 0.

Introduction to LabVIEW Hands-On 36 ni.com

Drawing a Loop

1. Select the structure

2. Enclose code to be repeated

3. Drop or drag additional nodes and then wire

Place loops in your diagram by selecting them from the Structures palette of the Functions
palette:

• When selected, the mouse cursor becomes a special pointer that you use to enclose the
section of code you want to repeat.

• Click the mouse button to define the top-left corner, click the mouse button again at the
bottom-right corner, and the While Loop boundary is created around the selected code.

• Drag or drop additional nodes in the While Loop if needed.

© National Instruments Corporation 37 Introduction to LabVIEW Hands-On

3 Types of Functions (from the Functions Palette)
Express VIs: interactive VIs with configurable dialog page (blue border)

Standard VIs: modularized VIs customized by wiring (customizable)

Functions: fundamental operating elements of LabVIEW; no front panel or
block diagram (yellow)

LabVIEW 7.0 introduced a new type of subVI called Express VIs. These are interactive
VIs that have a configuration dialog box that allows the user to customize the
functionality of the Express VI. LabVIEW then generates a subVI based on these
settings.

SubVIs are VIs (consisting of a front panel and a block diagram) that are used within
another VI.

Functions are the building blocks of all VIs. Functions do not have a front panel or a
block diagram.

Introduction to LabVIEW Hands-On 38 ni.com

What Types of Functions are Available?
• Input and Output

– Signal and Data Simulation
– Acquire and Generate Real Signals with DAQ
– Instrument I/O Assistant (Serial & GPIB)
– ActiveX for communication with other programs

• Analysis
– Signal Processing
– Statistics
– Advanced Math and Formulas
– Continuous Time Solver

• Storage
– File I/O

Express Functions Palette

LabVIEW includes several hundreds of pre-built functions that help you to acquire,
analyze, and present data. You would generally use these functions as outlined on the
slide above.

LabVIEW Toolkits

Additional toolkits are available for adding domain specific functionality to LabVIEW.
These toolkits include:

Control Design and Simulation

* Control Design and Simulation
Bundle

* LabVIEW Real-Time Module
* System Identification Toolkit
* Control Design Toolkit
* LabVIEW Simulation Module
* State Diagram Toolkit

Image Processing and Acquisition

* LabVIEW Vision Development
Module
* NI Vision Builder for Automated
Inspection
* NI-IMAQ for IEEE 1394

Signal Processing and Analysis

* Sound and Vibration Toolkit
* Advanced Signal Processing Toolkit
* Modulation Toolkit
* Spectral Measurements Toolkit
* Order Analysis Toolkit
* Digital Filter Design Toolkit

Software Engineering and
Optimization Tools

* Execution Trace Toolkit for
LabVIEW Real-Time
* Express VI Development Toolkit
* State Diagram Toolkit
* VI Analyzer Toolkit

Application Deployment and
Targeting Modules

* LabVIEW PDA Module
* LabVIEW Real-Time Module
* LabVIEW FPGA Module
* LabVIEW Vision Development
Module

Embedded System Deployment

* DSP Test Integration Toolkit
* Embedded Test Integration Toolkit
* Digital Filter Design Toolkit
* LabVIEW FPGA Module

http://www.ni.com/toolkits/

© National Instruments Corporation 39 Introduction to LabVIEW Hands-On

Searching for Controls, VIs, and Functions
• Palettes are filled with hundreds

of VIs
• Press the search button to index the

all VIs for text searching
• Click and drag an item from the

search window to the block diagram
• Double-click an item to open the

owning palette

Use the buttons on top of the palette windows to navigate, search, and edit the palettes.

You can search for controls, VIs, and functions that either contain certain words or start with
certain words. Double clicking a search result opens the palette that contains the search result.
You also can click and drag the name of the control, VI, or function directly to the front panel or
block diagram.

Introduction to LabVIEW Hands-On 40 ni.com

Exercise 2.1 – Analysis (Track A, B, & C)

Create a VI that produces a sine wave with a specified frequency and displays the data
on a Waveform Chart until stopped by the user.

1. Open a blank VI from the Getting Started screen.

2. Place a chart on the front panel. Right-click to open the controls palette and select
Controls»Modern»Graph»Waveform Chart.

3. Place a dial control on the front panel. From the controls palette, select
Controls»Modern »Numeric»Dial. Notice that when you first place the control on
the front panel, the label text is highlighted. While this text is highlighted, type
“Frequency In” to give a name to this control.

4. Go to the block diagram (<Ctrl+E>) and place a while loop down. Right-click to
open the functions palette and select Express»Execution Control»While Loop.
Click and drag on the block diagram to make the while loop the correct size. Select
the waveform chart and dial and drag them inside the while loop if they are not
already. Notice that a stop button is already connected to the conditional terminal of
the while loop.

5. Place the Simulate Signal Express VI on the block diagram. From the functions
palette, select Express»Signal Analysis»Simulate Signal and place it on the block
diagram inside the while loop. In the configuration window under Timing, choose
“Simulate acquisition timing.” Click “OK.”

6. Place a Tone Measurements Express VI on the block diagram (Express»Signal
Analysis»Tone Measurements). In the configuration window, choose Amplitude
and Frequency measurements in the Single Tone Measurements section. Click
“OK.”

© National Instruments Corporation 41 Introduction to LabVIEW Hands-On

7. Make the following connections on the block diagram by hovering your mouse over
the terminal so that it becomes the wiring tool and clicking once on each of the
terminals you wish to connect:

a. Connect the “Sine” output terminal of the Simulate Signal VI to the
“Signals” input of the Tone Measurements VI.

b. Connect the “Sine” output to the Waveform Chart.

c. Create indicators for the amplitude and frequency measurements by right-clicking
on each of the terminals of the Tone Measurements Express VI and selecting

Create»Numeric Indicator.

d. Connect the “Frequency In” control to the “Frequency” terminal of the
Simulate Signal VI.

8. Return to the front panel and run the VI. Move the “Frequency In” dial and observe
the frequency of the signal. Click the stop button once you are finished.

9. Save the VI as “Exercise 2.1 – Simulated.vi”.

10. Close the VI.

Notes

• When you bring up the functions palette, press the small push pin in the upper left
hand corner of the palette. This will tack down the palette so that it doesn’t
disappear. This step will be omitted in the following exercises, but should be
repeated.

• The solution to this exercise is printed in the back of this manual.

(End of Exercise)
Introduction to LabVIEW Hands-On 42 ni.com

Exercise 2.2 – Analysis (Track A & B)

Create a VI that measures the frequency and amplitude of the signal from your
(simulated) DAQ device and displays the acquired signal on a waveform chart. The
instructions are the same as in Exercise 2.1, but a DAQ Assistant is used in place of the
Simulate Signal VI. Try to do this without following the instructions!

1. Open a blank VI.

2. Place a chart on the front panel. Right click to open the controls palette and select
Controls»Modern»Graph»Waveform Chart.

3. Go to the block diagram and place a while loop down (Express»Execution
Control»While Loop).

4. Place a DAQ Assistant on the block diagram (Express»Input»DAQ Assistant).
Choose analog input on channel ai0 of your (simulated) device and click “Finish.”
On the task timing tab, choose “continuous” for the acquisition mode. If you are
using the USB-6009, change the Input Range to -2 to 2 and the number of Samples
to Read to 100.

5. Place the Filter Express VI to the right of the DAQ Assistant on the block diagram.
From the functions palette, select Express»Signal Analysis»Filter and place it on
the block diagram inside the while loop. In the configuration window under
Filtering Type, choose “Highpass.” Under Cutoff Frequency, use a value of 300 Hz.
Click “OK.”

6. Connect the “Data” output terminal of the DAQ Assistant VI to the “Signal” input
of the Filter VI.

7. Connect the “Filtered Signal” terminal on the Filter VI to the Waveform Chart.

8. Place a Tone Measurements Express VI on the block diagram (Express»Signal
Analysis»Tone). In the configuration window, choose Amplitude and Frequency
measurements in the Single Tone Measurements section.

9. Create indicators for the amplitude and frequency measurements by right clicking
on each of the terminals of the Tone Measurements Express VI and selecting
Create»Numeric Indicator.

10. Connect the output of the Filter VI to the “Signals” input of the Tone Measurements
Express VI.

11. Return to the front panel and run the VI. Observe your acquired signal and its
frequency and amplitude. Hum or whistle into the microphone if you have a USB-
6009 and observe the amplitude and frequency that you are producing.

12. Save the VI as “Exercise 2.2 - Data.vi”.

13. Close the VI.

Note: The solution to this exercise is printed in the back of this manual.

(End of Exercise)
© National Instruments Corporation 43 Introduction to LabVIEW Hands-On

Exercise 2.2 – Analysis (Track C)

Create a VI that measures the frequency and amplitude of the signal from your sound
card and displays the acquired signal on a waveform chart. The instructions are the
same as in Exercise 2.1, but the Sound Signal VI is used in place of the Simulate
Signal VI. Try to do this without following the instructions!

1. Open a blank VI.

2. Go to the block diagram and place a While Loop down (Express»Execution
Control»While Loop).

3. Place the Acquire Sound Express VI on the block diagram (Express»Input»
Acquire Sound).

4. Place a Filter Express VI on the block diagram. In the configuration window choose
a highpass filter and a cutoff frequency of 300 Hz.

5. Place a Tone Measurements Express VI on the block diagram (Express»Signal
Analysis»Tone). In the configuration window, choose Amplitude and Frequency
measurements in the Single Tone Measurements section.

6. Create indicators for the amplitude and frequency measurements by right-clicking
on each of the terminals of the Tone Measurements Express VI and selecting
Create»Numeric Indicator.

7. Connect the “Data” terminal of the Acquire Sound Express VI to the “Signal” input
of the Filter VI.

8. Connect the “Filtered Signal” terminal of the Filter VI to the “Signals” input of the
Tone Measurements VI.

9. Create a graph indicator for the Filtered Signal by right-clicking on the “Filtered
Signal” terminal and selecting Create»Graph Indicator.

10. Return to the front panel and run the VI. Observe the signal from your sound card
and its amplitude and frequency. Hum or whistle into the microphone and observe
the amplitude and frequency you are producing.

11. Save the VI as “Exercise 2.2-Data.vi”. Close the VI.

Note: The solution to this exercise is printed in the back of this manual.

(End of Exercise)
Introduction to LabVIEW Hands-On 44 ni.com

How Do I Make Decisions in LabVIEW?
1. Case Structures

2. Select
(a) (b)

(c)

Case Structure

The Case Structure has one or more subdiagrams, or cases, exactly one of which
executes when the structure executes. The value wired to the selector terminal
determines which case to execute and can be boolean, string, integer, or enumerated
type. Right-click the structure border to add or delete cases. Use the Labeling tool to
enter value(s) in the case selector label and configure the value(s) handled by each case.
It is found at Functions»Programming»Structures»Case Structure.

Select

Returns the value wired to the t input or f input, depending on the value of s. If s is
TRUE, this function returns the value wired to t. If s is FALSE, this function returns the
value wired to f. The connector pane displays the default data types for this polymorphic
function. It is found at Functions»Programming» Comparison»Select.

• Example a: Boolean input: Simple if-then case. If the Boolean input is TRUE, the
true case will execute; otherwise the FALSE case will execute.

• Example b: Numeric input. The input value determines which box to execute. If out
of range of the cases, LabVIEW will choose the default case.

• Example c: When the Boolean passes a TRUE value to the Select VI, the value 5 is
passed to the indicator. When the Boolean passes a FALSE value to the Select VI, 0
is passed to the indicator.

© National Instruments Corporation 45 Introduction to LabVIEW Hands-On

File I/O

• File I/O – Allows recording or reading data in a file.
• LabVIEW creates or uses the following file formats:

– Binary: underlying file format of all other file formats
– ASCII: regular text files
– LVM: LabVIEW measurement data file
– TDM: created for National Instruments products

File I/O operations pass data from memory to and from files. In LabVIEW, you
can

use File I/O functions to:
• Open and close data files
• Read data from and write data to files
• Read from and write to spreadsheet-formatted files
• Move and rename files and directories
• Change file characteristics
• Create, modify, and read a configuration file

The different file formats that LabVIEW can use or create are the following:

• Binary – Binary files are the underlying file format of all other file formats.
• ASCII – An ASCII file is a specific type of binary file that is a standard used

by most programs. ASCII file are also called text files.
• LVM – The LabVIEW measurement data file (.lvm) is a tab-delimited text file

you can open with a spreadsheet application or a text-editing application. This
file format is a specific type of ASCII file created for LabVIEW. The .lvm file
contain information about the data, such as the date and time the data was
generated.

• TDM – This file format is a specific type of binary created for National
Instruments products. It actually consists of two separate files: an XML section
contains the data attributes, and a binary file for the waveform.

Introduction to LabVIEW Hands-On 46 ni.com

High Level File I/O Functions

• Easy to use
• High Level of abstraction

Writing to LVM fileWriting to LVM file Reading from LVM fileReading from LVM file

High Level File I/O: These functions provide a higher level of abstraction to the user by
opening and closing the file automatically before and after reading or writing data. Some
of these functions are:

o Write to Spreadsheet File – Converts a 1D or 2D array of single-precision numbers
to a text string and writes the string to a new ASCII file or appends the string to an
existing file.

o Read From Spreadsheet File – Reads a specified number of lines or rows from a
numeric text file beginning at a specified character offset and converts the data to a 2D
single-precision array of numbers. The VI opens the file before reading from it and
closes it afterwards.

o Write to Measurement File – Express VI that writes data to a text-based
measurement file (.lvm) or a binary measurement file (.tdm) format.

o Read from Measurement File – An Express VI that writes data to a text-based
measurement file (.lvm) or a binary measurement file (.tdm) format. You can specify the
file name, file format and segment size.

These functions are very easy to use and are excellent for simple applications. In the
case where you will do constant streaming to the files by continuously writing to or
reading from the file, there may be some overhead in using these functions.

In the next example we will examine how to write to or read from LabVIEW
Measurements files (*.lvm files).

© National Instruments Corporation 47 Introduction to LabVIEW Hands-On

Exercise 2.3 – Decision Making and Saving Data (Track A, B, & C)

Create a VI that allows you to save your data to file if the frequency of your data
goes below a user-controlled limit.

1. Open Exercise 3.2 – Data.vi.

2. Go to File»Save As… and save it as “Exercise 3.3 – Decision Making and Saving
Data”. In the “Save As” dialog box, make sure substitute copy for original is
selected and click “Continue…”.

3. Add a case structure to the block diagram inside the while loop
(Functions»Programming»Structures»Case Structure).

4. Inside the “true” case of the case structure, add a Write to Measurement File
Express VI (Functions»Programming»File I/O»Write to Measurement File).

a. In the configuration window that opens, choose “Save to series of files
(multiple files).” Note the default location your file will be saved to and change
it if you wish.

b. Click “Settings…” and choose “Use next available file name” under the
Existing Files heading.

c. Under File Termination choose to start a new file after 10 segments. Click
“OK” twice.

5. Add code so that if the frequency computed from the Tone Measurements Express
VI goes below a user-controlled limit, the data will be saved to file. Hint: Go to
Functions»Programming»Comparison»Less?

6. Remember to connect your data from the DAQ Assistant or Acquire Sound Express
VI to the “Signals” input of the Write to Measurement File VI. If you need help,
refer to the solution to this exercise.

7. Go to the front panel and run your VI. Vary your frequency limit and then stop the
VI.

8. Navigate to My Documents»LabVIEW Data and open one of the files that was
saved there. Examine the file structure and check to verify that 10 segments are in
the file.

9. Save your VI and close it.

Note: The solution to this exercise is printed in the back of this manual.

(End of Exercise)

Introduction to LabVIEW Hands-On 48 ni.com

.

File I/O Programming Model – Under the hood

Open/
Create/

Replace File

Read
and/or

Write to File

Close
File

Check for
Errors

Programming Model for the Intermediate File VIs

This same programming model applies to data acqusion, instrument control, file I/O, and most
other communication schemes. In most instances you will open the file or communication
channel, read and write multiple times, and then the communication will be closed or ended. It
is also good programming practice to check for errors at the end. Remember this programming
model when you move on to more advanced programming or look inside DAQ,
communication, or file I/O Express VIs.

File I/O VIs and Functions

Use the File I/O VIs and functions to open and close files, read from and write to files, create
directories and files you specify in the path control, retrieve directory information, and write
strings, numbers, arrays, and clusters to files.

Use the high-level File I/O VIs located on the top row of the palette to perform common I/O
operations, such as writing to or reading from various types of data. Acceptable types can
include characters or lines in text files, 1D or 2D arrays of single-precision numeric values in
spreadsheet text files, 1D or 2D arrays of single-precision numeric values in binary files, or 16-
bit signed integers in binary files.

Use low-level File I/O VIs and functions located on the middle row of the palette, and the
Advanced File Functions to control each file I/O operation individually.

Use the principal low-level functions to create or open, write data to, read data from, and close
a file. You also can use low-level functions to create directories; move, copy, or delete files; list
directory contents; change file characteristics; or manipulate paths.

Refer to the NI Developer Zone for more information about choosing a file format.

© National Instruments Corporation 49 Introduction to LabVIEW Hands-On

Spreadsheet Formatting

• Spreadsheet files are ASCII files with a certain
formatting
– Usually tabs between columns and end of line constants

between rows
– LabVIEW includes VIs that perform this formatting or a string

can be concatenated

Spreadsheets are usually ASCII files with a certain type of formatting. Two formatting
methods are comma separated values (CSV) and tab delimited. Tab delimited files,
which are the most popular, have tabs constants between columns of data and end of
line constants between rows. LabVIEW includes VIs that perform this formatting:

Write to Spreadsheet File takes either 1D or 2D arrays of numeric data, formats this
data, and writes this information to file.

Format Into File takes many different types of data (string, numeric, Boolean) and
writes this information to file, using either a file path or file reference. This function can
be resized to include as many data terminals as necessary.

Array to Spreadsheet String is a string function that formats array data into a string
that can be written to a text file.

The Concatenate String function is used to create longer strings from shorter ones and
is the most flexible when converting data to a string that can be written to a text file.

Introduction to LabVIEW Hands-On 50 ni.com

Exercise 2.4 – Write to Spreadsheet File

1. Open a blank new VI from the Getting Started screen.

2. Place the Open/Create/Replace File function on the block diagram. Right-click on the block
diagram to open the functions palette and select File I/O » Open/Create/Replace File.

3. Right-click the operation terminal of the Open/Create/Replace File function and select Create
» Constant from the shortcut menu, and select open or create from the drop down menu.

4. Place a While loop from the Structures palette on the block diagram to the right of the
Open/Create/Replace File function. Right-click on the block diagram select Structures » While
Loop.

5. Place a Write Text File function inside the While Loop. Right-click on the block diagram select
File I/O » Write To Text File.

6. Wire the refnum out terminal from the Open/Create/Replace File function to the file (use
dialog) terminal of the Write Text File function.

7. Wire the error out terminal from the Open/Create/Replace File function to the error in
terminal of the Write Text File function.

8. Place an Array to Spreadsheet String function inside the while loop and to the left of the on
Open/Create/Replace File function. Right-click on the block diagram and select String » Array
to Spreadsheet String.

9. Right-click the format string terminal of the Array to Spreadsheet function and select Create »
Constant from the shortcut menu and enter “%0.4f” in the string constant to format the input
data.

10. Place a Build Array Function on the block diagram. Right-click on the block diagram and select
Array » Build Array.

11. Place a Random Number inside the While Loop. Right-click on the block diagram and select
Numeric » Random Number (0-1).

12. Wire the error out terminal of the Write Text File function to an output tunnel on the While
Loop.

13. Place an Unbundle By Name function inside the While Loop. Right-click on the block diagram
to open the functions palette and select Cluster & Variant » Unbundle By Name.

14. Wire the error out from the Write Text File function to the Unbundle By Name
function.

15. Place an Or function in the While Loop. Right-click on the block diagram to open
the functions palette and select Boolean » Or.

16. Switch to the front panel and place a stop button. Right-Click on the front panel to open
the Controls palette and select Boolean » Stop Button.

17. On the block diagram, wire the status element of the error cluster to the x input of the
Or function and wire the stop button to the y input.

18. Wire the output of the Or function to the conditional terminal of the While Loop.

© National Instruments Corporation 51 Introduction to LabVIEW Hands-On

19. Place a Close File function to the right of the While Loop. Right-click on the block diagram
to open the functions palette and select File I/O » Close File.

20. Wire the refnum output tunnel to the refnum input terminal of the Close File function.

21. Wire the error output tunnel to the error in terminal of the Close File function.

22. Return to the front panel and run the VI. You will be prompted to “Choose or enter path of
file to open”, enter: “spreadsheet.xls”.

23. Click on the stop button to stop the execution of the VI.

24. Open the file named: “spreadsheet.xls”.

25. Save and the close the VI.

(End of Exercise)

Introduction to LabVIEW Hands-On 52 ni.com

Section III – Presenting your Results
A. Displaying Data on the Front Panel

• Controls and Indicators
• Graphs and Charts
• Loop Timing

B. Signal Processing
• MathScript
• Arrays
• Clusters
• Waveforms

© National Instruments Corporation 53 Introduction to LabVIEW Hands-On

What Types of Controls and Indicators are Available?
• Numeric Data

– Number input and display
– Analog Sliders, Dials, and Gauges

• Boolean Data
– Buttons and LEDs

• Array & Matrix Data
– Numeric Display
– Chart
– Graph
– XY Graph
– Intensity Graph
– 3D graph: point, surface, and model

• Decorations
– Tab Control
– Arrows

• Other
– Strings and text boxes
– Picture/Image Display
– ActiveX Controls

Express Controls Palette

Controls and Indicators are Front Panel items that allow the user to interact with your
program to both provide input and display results. You can access Controls and
Indicators by right-clicking the front panel.

In addition, you will get additional controls and indicators when you install toolkits and
modules.

For example, when you install the Control Design tools, you will get specialized plots
such as Bode and Nyquist plots that are not available by default.

Introduction to LabVIEW Hands-On 54 ni.com

Charts – Add 1 data point at a time with history
Waveform chart – special numeric indicator that can
display a history of values

• Chart updates with each individual point it receives

Functions»Express»Graph Indicators»Chart

The waveform chart is a special numeric indicator that displays one or more plots. The
waveform chart is located on the Controls»Modern»Graph palette. Waveform charts
can display single or multiple plots. The following front panel shows an example of a
multi-plot waveform chart.

You can change the min and max values of either the x or y axis by double clicking on
the value with the labeling tool and typing the new value. Similarly, you can change the
label of the axis. You can also right click the plot legend and change the style, shape,
and color of the trace that is displayed on the chart.

© National Instruments Corporation 55 Introduction to LabVIEW Hands-On

Graphs – Display many data points at once
Waveform graph – special numeric indicator that
displays an array of data

• Graph updates after all points have been collected
• May be used in a loop if VI collects buffers of data
Functions»Express»Graph Indicators»Graph

Graphs are very powerful indicators in LabVIEW. The can are highly customizable, and
can be used to concisely display a great deal of information.

The properties page of the graph allows you to display settings for plot types, scale and
cursor options, and many other features of the graph. To open the properties page, right-
click the graph on the front panel and choose Properties.

Graphs also allow you to create technical paper quality graphics with the “export
simplified image” function. Right-click the graph, select Data Operations»Export
Simplified Image…

Introduction to LabVIEW Hands-On 56 ni.com

• Loops can accumulate
arrays at their boundaries
with auto-indexing

• For Loops auto-index by
default

• While Loops output only
the final value by default

• Right-click tunnel and
enable/disable auto-
indexing

Building Arrays with Loops (Auto-Indexing)
Wire becomes thicker

Wire remains the same size

Auto-Indexing Disabled

Auto-Indexing Enabled

Only one value (last iteration)
is passed out of the loop

1D Array

0 1 2 3 4 5

5

For Loops and While Loops can index and accumulate arrays at their boundaries. This is
known as auto-indexing.
• The indexing point on the boundary is called a tunnel.
• The For Loop default is auto-indexing enabled.
• The While Loop default is auto-indexing disabled.

Examples:
• Enable auto-indexing to collect values within the loop and build the array. All values are

placed in array upon exiting loop.
• Disable auto-indexing if you are interested only in the final value.

© National Instruments Corporation 57 Introduction to LabVIEW Hands-On

Creating an Array (Step 1 of 2)
From the Controls»Modern»Array, Matrix, and
Cluster subpalette, select the Array icon.

Drop it on the Front Panel.

To create an array control or indicator as shown, select an array on the
Controls»Modern»Array, Matrix, and Cluster palette, place it on the front panel, and
drag a control or indicator into the array shell. If you attempt to drag an invalid control
or indicator such as an XY graph into the array shell, you are unable to drop the control
or indicator in the array shell.

You must insert an object in the array shell before you use the array on the block
diagram. Otherwise, the array terminal appears black with an empty bracket.

Introduction to LabVIEW Hands-On 58 ni.com

Create an Array (Step 2 of 2)
1. Place an Array Shell.
2. Insert datatype into the shell (i.e. Numeric Control).

To add dimensions to an array one at a time, right-click the index display and
select Add Dimension from the shortcut menu. You also can use the Positioning
tool to resize the index display until you have as many dimensions as you want.

1D Array Viewing a Single Element:

1D Array Viewing Multiple Elements:

2D Array Viewing a Single Element:

2D Array Viewing Multiple Elements:

© National Instruments Corporation 59 Introduction to LabVIEW Hands-On

How Do I Time a Loop?
1. Loop Time Delay

• Configure the Time Delay Express VI for seconds to wait
each iteration of the loop (works on For and While loops).

2. Timed Loops
• Configure special timed While loop for desired dt.

Timed LoopTime Delay

Time Delay
The Time Delay Express VI delays execution by a specified number of seconds.
Following the rules of Data Flow Programming, the while loop will not iterate until all
tasks inside of it are complete, thus delaying each iteration of the loop.
Timed Loops
Executes each iteration of the loop at the period you specify. Use the Timed Loop when
you want to develop VIs with multi-rate timing capabilities, precise timing, feedback on
loop execution, timing characteristics that change dynamically, or several levels of
execution priority.
Double-click the Input Node or right-click the Input Node and select Configure Timed
Loop from the shortcut menu to display the Loop Configuration dialog box, where you
can configure the Timed Loop. The values you enter in the Loop Configuration dialog
box appear as options in the Input Node.

Wait Until Next ms Multiple
Waits until the value of the millisecond timer becomes a multiple of the specified
millisecond multiple. Use this function to synchronize activities. You can call this
function in a loop to control the loop execution rate. However, it is possible that the
first loop period might be short. This function makes asynchronous system calls,
but the nodes themselves function synchronously. Therefore, it does not complete
execution until the specified time has elapsed.
Functions»Programming»Timing»Wait Until Next ms Multiple

Introduction to LabVIEW Hands-On 60 ni.com

Control & Indicator Properties
• Properties are characteristics or qualities about an object
• Properties can be found by right clicking on a Control or Indicator

• Properties Include:
– Size
– Color
– Plot Style
– Plot color

• Features include:
– Cursors
– Scaling

Properties are all the qualities of a front panel object. With properties, you can
set or read such characteristics as foreground and background color, data
formatting and precision, visibility, descriptive text, size and location on the
front panel, and so on.

© National Instruments Corporation 61 Introduction to LabVIEW Hands-On

Exercise 3.1 – Manual Analysis (Track A, B, & C)

Create a VI that displays simulated data on a waveform graph and measures the
frequency and amplitude of that data. Use cursors on the graph to verify the
frequency and amplitude measurements.

1. Open Exercise 2.1 – Simulated.vi.

2. Save the VI as “Exercise 3.1 – Manual Analysis.vi”.

3. Go to the block diagram and remove the While Loop. Right-click the edge of the
loop and choose Remove While Loop so that the code inside the loop does not get
deleted.

4. Delete the stop button.

5. On the front panel, replace the waveform chart with a waveform graph. Right-click
the chart and select Replace»Modern»Graph»Waveform Graph.

6. Make the cursor legend viewable on the graph. Right-click on the graph and select
Visible Items»Cursor Legend.

7. Change the maximum value of the “Frequency In” dial to 100. Double-click on the
maximum value and type “100” once the text is highlighted.

8. Set a default value for the “Frequency In” dial by setting the dial to the value you
would like, right-clicking the dial, and selecting Data Operations»Make Current
Value Default.

9. Run the VI and observe the signal on the waveform graph. If you cannot see the
signal, you may need to turn on auto-scaling for the x-axis. Right-click on the graph
and select X Scale»AutoScale X.

10. Change the frequency of the signal so you can see a few periods on the graph.

11. Manually measure the frequency and amplitude of the signal on the graph using
cursors. To make the cursors display on the graph, click on one of the three buttons
in the cursor legend. Once the cursors are displayed, you can drag them around on
the graph and their coordinates will be displayed in the cursor legend.

12. Remember that the frequency of a signal is the reciprocal of its period (f = 1/T).
Does your measurement match the frequency and amplitude indicators from the
Tone Measurements VI?

13. Save your VI and close it.

Note: The solution to this exercise is printed in the back of this manual.

(End of Exercise)

Introduction to LabVIEW Hands-On 62 ni.com

Textual Math in LabVIEW
• Integrate existing scripts with LabVIEW for faster development
• Interactive, easy-to-use, hands-on learning environment
• Develop algorithms, explore mathematical concepts, and

analyze results using a single environment
• Freedom to choose the most effective syntax, whether

graphical or textual within one VI
Supported Math Tools:
MathScript script node MathSoft software
Mathematica software MATLAB® software
Maple software Xmath software

MATLAB ® is a registered trademark of The MathWorks, Inc.

Overview
With the release of National Instruments LabVIEW 8, you have new freedom to choose the
most effective syntax for technical computing, whether you are developing algorithms,
exploring DSP concepts, or analyzing results. You can instrument your scripts and develop
algorithms on the block diagram by interacting with popular third-party math tools such as The
MathWorks Inc. MATLAB software, Mathematica, Maple, Mathcad, IDL and Xmath. Use of
these math tools with LabVIEW is achieved in a variety of ways depending on the vendor as
listed below:

Native LabVIEW textual math node:
MathScript node, Formula node

Communication with vendor software through LabVIEW node:
Xmath node, MATLAB script node, Maple* node, IDL* node

Communication with vendor software through VI Server:
Mathematica* VIs, and Mathcad* VIs

In LabVIEW 8, you can combine the intuitive LabVIEW graphical dataflow programming with
MathScript, a math-oriented textual programming language that is generally compatible with
popular m-file script language.

*LabVIEW toolkit specific to the math tool must be installed.

Math Node

© National Instruments Corporation 63 Introduction to LabVIEW Hands-On

Math with the MathScript Node
• Implement equations and algorithms textually
• Input and Output variables created at the border
• Generally compatible with popular m-file script language
• Terminate statements with a semicolon to disable immediate

output

Prototype your equations in the interactive MathScript Window.

(Functions»Programming»
Structures»MathScript)

The MathScript Node enhances LabVIEW by adding a native text-based language
for mathematical algorithm implementation in the graphical programming
environment. M-file scripts you’ve written and saved from the MathScript
window can be opened and used in the MathScript node. M-file scripts you
created in other math software will generally run as well. The MathScript allows
you to pick the syntax you are most comfortable with to solve the problem.
Equations can be instrumented with the MathScript Node for parameter
exploration, simulation, or deployment in a final application.

The MathScript Node:
• Located in the Programming»Structures subpalette.
• Resizable box for entering textual computations directly into block diagrams.
• To add variables, right-click and choose Add Input or Add Output.
• Name variables as they are used in formula. (Names are case sensitive.)
• The data type of the output can be changed by right-clicking the input or

output node.
• Statements should be terminated with a semicolon to suppress output.
• Ability to import & export m-files by right-clicking on the node.

Introduction to LabVIEW Hands-On 64 ni.com

The Interactive MathScript Window
• Rapidly develop and test algorithms

(LabVIEW»Tools»MathScript Window)

Output
Window

Variable
Workspace

View/Modify
Variable Contents

User Commands
m-file Script

• Share Scripts and
Variables with the Node

• View /Modify Variable
content in 1D, 2D, and 3D

The MathScript Window provides an interactive environment where equations can be
prototyped and calculations can be made. The MathScript Window and Node share a
common syntax and global variables making the move from prototype to
implementation seamless. The data preview pane provides a convenient way to view
variable data as numbers, graphically, or audibly (with soundcard support).

Help for MathScript

Help for the environment can be accessed using the Mathscript Interactive Environment
Window. Type Help in the command window for an introduction to MathScript help.
Help followed by a function will display help specific to that function.

Features of the interactive MathScript Window:

• Prototype equations and formulas through the command Window

• Easily access function help by typing Help <function> in the Command Window

• Select a variable to display its data in the Preview Pane and even listen to the result

• Write, Save, Load, and Run m-files using the Script tab

• Share data between the MathScript Node in LabVIEW and the MathScript Window
using Global Variables

• Advanced plotting features and image export features

© National Instruments Corporation 65 Introduction to LabVIEW Hands-On

Exercise 3.2 – MathScript (Track A, B, & C)

Create a VI that uses the MathScript Node to alter your simulated signal and graph it.
Use

the Interactive MathScript Window to view and alter the data and then load the script
you

have created back into the MathScript Node.

1. Open Exercise 3.1 – Manual Analysis.vi.

2. Save the VI as “Exercise 3.2 – MathScript.vi”.

3. Go to the block diagram and delete the wire connecting the Simulate Signal VI to
the Waveform Graph.

4. Place down a MathScript Node (Programming»Structures»MathScript Node).

5. Right-click on the left border of the MathScript Node and select Add Input. Name
this input “In” by typing while the input node is highlighted black.

6. Right-click on the right border of the MathScript Node and select Add Output.
Name this output “Out”.

7. Convert the Dynamic Data Type output of the Simulate Signals VI to a 1D Array of
Scalars to input to the MathScript Node. Place a Convert from Dynamic Data
Express VI on the block diagram (Express»Signal Manipulation»Convert from
Dynamic Data). By default, the VI is configured correctly so click “OK” in the
configuration window.

8. Wire the “Sine” output of the Simulate Signal VI to the “Dynamic Data” input of
the Convert from Dynamic Data VI.

9. Wire the “Array” output of the Convert from Dynamic Data VI to the “In” node on
the MathScript Node.

10. In order to use the data from the Simulate Signal VI in the Interactive MathScript
Window it is necessary to declare the input variable as a global variable. Inside the
MathScript Node type “global In;”.

11. Return to the front panel and increase the frequency to be between 50 and 100. Run
the VI.

12. Open the Interactive MathScript Window (Tools»MathScript Window…).

13. In the MathScript Window, the Command Window can be used to enter in the
command that you wish to compute. In the Command Window, type “global In” and
press “Enter”. This will allow you to see the data passed to the variable “In” on the
MathScript Node.

Introduction to LabVIEW Hands-On 66 ni.com

14. Notice that all declared variables in the script along with their dimensions and type are listed
on the “Variables” tab. To display the graphed data, click once on the variable In and
change the drop down menu from “Numeric” to “Graph”.

15. Use the graph palette to zoom in on your data.

16. Right-click on “Cursor 1” and choose Bring to Center. What does this do?

17. Drag the cursor around. The cursor will not move if the zoom option is selected.

18. Right-click on the graph and choose Undock Window. What does this do? Close this new
window when you are finished.

© National Instruments Corporation 67 Introduction to LabVIEW Hands-On

19. Multiply the data by a decreasing exponential function. Follow these steps:

a. Make a 100 element array of data that constitutes a ramp function going
from 0.01 to 5 by typing “Array = [0.01:0.05:5];” in the Command
Window and pressing Enter. What type of variable is “Array”?

b. Make an array containing a decreasing exponential. Type
“Exp = 5*exp(-Array);” and press Enter.

c. Now multiply the Exp and In arrays element by element by typing
“Out = In.*Exp;” and pressing Enter.

d. Look at the graph of the variable “Out”.

20. Go to the History tab and use Ctrl-click to choose the 4 commands you just entered.
Copy those commands using <Ctrl-C>.

21. On the Script tab, paste the commands into the Script Editor using <Ctrl-V>.

22. Save your script by clicking “Save” at the bottom of the window. Save it as
“myscript.txt”

23. Close the MathScript Window.

24. Return to the block diagram of Exercise 4.2 – MathScript. Load the script you just
made by right-clicking on the MathScript Node border and selecting Import…
Navigate to myscript.txt, select it, and click “OK”.

25. Right-click on the variable “Out” and select Choose Data Type»1D-Array»DBL 1D.
Output data types must be set manually on the MathScript Node.

26. Wire “Out” to the Waveform Graph.

27. Return to the front panel and run the VI.
Does the data look like you expect?

25. Save and close your VI.

Note: The solution to this exercise is printed in the
back of this manual.

(End of Exercise)

Introduction to LabVIEW Hands-On 68 ni.com

Review of Data Types Found in LabVIEW

LabVIEW utilizes many common datatypes. These Datatypes include:

Boolean, Numeric, Arrays, Strings, Clusters, and more.

The color and symbol of each terminal indicate the data type of the control or indicator.
Control terminals have a thicker border than indicator terminals. Also, arrows appear on
front panel terminals to indicate whether the terminal is a control or an indicator. An
arrow appears on the right if the terminal is a control, and an arrow appears on the left if
the terminal is an indicator.

Definitions

• Array: Arrays group data elements of the same type. An array consists of elements
and dimensions. Elements are the data that make up the array. A dimension is the
length, height, or depth of an array. An array can have one or more dimensions and
as many as (231) – 1 elements per dimension, memory permitting.

• Cluster: Clusters group data elements of mixed types, such as a bundle of wires in
a telephone cable, where each wire in the cable represents a different element of the
cluster.

See Help»Search the LabVIEW Help… for more information. The LabVIEW User
Manual on ni.com provides additional reference for data types found in LabVIEW.

© National Instruments Corporation 69 Introduction to LabVIEW Hands-On

Exercise 3.3 – Apply What You Have Learned (Track A, B, & C)

In this exercise, you will create a VI that uses what you have learned. Design a VI
that does the following:

1. Acquire data from your device and graph it (either your DAQ device, your
simulated device, or your sound card).

2. Filter that data using the Filter Express VI (Functions»Express»Signal
Analysis»Filter). There should be a front panel control for a user configurable cut-
off frequency.

3. Take a Fast Fourier Transform to get the frequency information from the filtered
data and graph the result. Use the Spectral Measurements Express VI
(Functions»Express»Signal Analysis»Spectral).

4. Find the dominant frequency of the filtered data using the Tone Measurements
Express VI.

5. Compare that frequency to a user inputted limit. If the frequency is over that limit,
light up an LED. If you have a USB-6009, light up the LED on your hardware using
the DAQ Assistant. You will need to invert the digital line for the LED to light up
when over the limit. You can specify this in the configuration window of the DAQ
Assistant or with a “not” boolean function.

6. If you get stuck, open up the solution or view it at the end of this manual.

(End of Exercise)
Introduction to LabVIEW Hands-On 70 ni.com

Section IV – Additional LabVIEW Topics
A. Additional Data types

• Cluster
B. Data Flow Constructs

• Shift Register
C. SubVIs
D. State Machines
E. Local Variables
F. Producer/Consumer

© National Instruments Corporation 71 Introduction to LabVIEW Hands-On

Introduction to Clusters

• Data structure that groups data together
• Data may be of different types
• Analogous to struct in C
• Elements must be either all controls or all indicators
• Thought of as wires bundled into a cable
• Order is important

Clusters group like or unlike components together. They are equivalent to a record in
Pascal or a struct in C.

Cluster components may be of different data types.

Examples:

• Error information—Grouping a Boolean error flag, a numeric error code, and an
error source string to specify the exact error.

• User information—Grouping a string indicating a user’s name and an ID number
specifying their security code.

All elements of a cluster must be either controls or indicators. You cannot have a string
control and a Boolean indicator. Clusters can be thought of as grouping individual wires
(data objects) together into a cable (cluster).

Introduction to LabVIEW Hands-On 72 ni.com

Creating a Cluster
1. Select a Cluster shell.

Controls»Modern»Array, Matrix & Cluster

2. Place objects inside the shell.

Cluster front panel object can be created by choosing Cluster from the
Controls»Modern»Array, Matrix & Cluster palette.

• This option gives you a shell (similar to the array shell when creating arrays).

• You can size the cluster shell when you drop it.

• Right-click inside the shell and add objects of any type.

Note: You can even have a cluster inside of a cluster.

The cluster becomes a control or an indicator cluster based on the first object you place
inside the cluster.

You can also create a cluster constant on the block diagram by choosing Cluster
Constant from the Cluster palette.

• This gives you an empty cluster shell.

• You can size the cluster when you drop it.

• Put other constants inside the shell.

Note: You cannot place terminals for front panel objects in a cluster constant on the
block diagram, nor can you place “special” constants like the Tab or Empty String
constant within a block diagram cluster shell.

© National Instruments Corporation 73 Introduction to LabVIEW Hands-On

Cluster Functions
• In the Cluster & Variant subpalette of the

Programming palette
• Can also be accessed by right-clicking the cluster

terminal

Bundle

(Terminal labels
reflect data type)

Bundle By Name

The terms Bundle and Cluster are closely related in LabVIEW.

Example: You use a Bundle Function to create a Cluster. You use an Unbundle function
to extract the parts of a cluster.

Bundle function—Forms a cluster containing the given objects (explain the example).

Bundle by Name function—Updates specific cluster object values (the object must
have an owned label).

Note: You must have an existing cluster wired into the middle terminal of the function
to use Bundle By Name.

Introduction to LabVIEW Hands-On 74 ni.com

Using Arrays and Clusters with Graphs
The Waveform Datatype contains 3 pieces of data:
• t0 = Start Time
• dt = Time between Samples
• Y = Array of Y magnitudes

Two ways to create a Waveform Cluster:

Build Waveform (absolute time) Cluster (relative time)

The waveform data type carries the data, start time, and ∆t of a waveform. You can
create waveforms using the Build Waveform function. Many of the VIs and functions
you use to acquire or analyze waveforms accept and return the waveform data type by
default. When you wire a waveform data type to a waveform graph or chart, the graph
or chart automatically plots a waveform based on the data, start time, and ∆x of the
waveform. When you wire an array of waveform data types to a waveform graph or
chart, the graph or chart automatically plots all the waveforms.

Build Waveform

Builds a waveform or modifies an existing waveform
with the start time represented as an absolute
TimeStamp. Time Stamps are accurate to real-world
time & date and are very useful for real-world data
recording.

Bundle

Builds a waveform or modifies an existing waveform
with a relative time stamp. The input to t0 is a DBL.
Building waveforms using the bundle allows data to be
plotted on the negative X (time) axis.

© National Instruments Corporation 75 Introduction to LabVIEW Hands-On

Shift Register – Access Previous Loop Data
• Available at left or right border of loop structures
• Right-click the border and select Add Shift Register
• Right terminal stores data on completion of iteration
• Left terminal provides stored data at beginning of next iteration

Before
Loop

Begins
First

Iteration
Second
Iteration

Last
Iteration

Value 3Initial
Value

Shift registers transfer data from one iteration to the next:

• Right-click on the left or right side of a For Loop or a While Loop and select Add Shift
Register.

• The right terminal stores data at the end of an iteration. Data appears at the left terminal at the
start of the next iteration.

• A shift register adapts to any data type wired into it.

An input of 0 would result in an output of 5 the first iteration, 10 the second iteration and 15 the
third iteration. Said another way, shift registers are used to retain values from one iteration to the
next. They are valuable for many applications that have memory or feedback between states.
The feedback node is another representation of the same concept. (pictured below) Both
programs pictured behave the same.

See Help»Search the LabVIEW Help… for more information.

Introduction to LabVIEW Hands-On 76 ni.com

Modularity in LabVIEW – SubVIs

Convert repeated functions
and VIs with a single VI

Modularity defines the degree to which your VI is composed of discrete components such that a
change to one component has minimal impact on other components. In LabVIEW these
separate components are called subVIs. Creating subVIs out of your code increases the
readability and reusability of your VIs.

In the upper image, we see repeated code allowing the user to choose between temperature
scales. Since this portion of this code is identical in both cases, we can create a subVI for it.
This will make the code more readable, by being less clustered, and will allow us to reuse code
easily. As you can see, the code is far less cluttered now, achieves the exact same functionality
and if needed, the temperature scale selection portion of the code can be reused in other
applications very easily.

Any portion of LabVIEW code can be turned into a subVI that in turn can be used by other
LabVIEW code.

© National Instruments Corporation 77 Introduction to LabVIEW Hands-On

Create SubVI
• Enclose area to be converted into a subVI.
• Select Edit»Create SubVI from the Edit Menu.

Creating SubVIs

A subVI node corresponds to a subroutine call in text-based programming languages. A block
diagram that contains several identical subVI nodes calls the same subVI several times.

The subVI controls and indicators receive data from and return data to the block diagram of the
calling VI. Click the Select a VI icon or text on the Functions palette, navigate to and double-
click a VI, and place the VI on a block diagram to create a subVI call to that VI.

A subVI input and output terminals and the icon can be easily customized. Follow the
instructions below to quickly create a subVI.

Creating SubVIs from Sections of a VI

Convert a section of a VI into a subVI by using the Positioning tool to select the section of the
block diagram you want to reuse and selecting Edit»Create SubVI. An icon for the new subVI
replaces the selected section of the block diagram. LabVIEW creates controls and indicators for
the new subVI, automatically configures the connector pane based on the number of control and
indicator terminals you selected, and wires the subVI to the existing wires.

See Help»Search the LabVIEW Help…»SubVIs for more information.

Introduction to LabVIEW Hands-On 78 ni.com

LabVIEW Functions and SubVIs operate like Functions
in other languages

Function Pseudo Code
function average (in1, in2, out)
{
out = (in1 + in2)/2.0;
}

SubVI Block Diagram

Calling Program Pseudo Code
main
{
average (in1, in2, pointavg)
}

Calling VI Block Diagram

A subVI node corresponds to a subroutine call in text-based programming languages. The node
is not the subVI itself, just as a subroutine call statement in a program is not the subroutine itself.
A block diagram that contains several identical subVI nodes calls the same subVI several times.
The modular approach makes applications easier to debug and maintain. The functionality of
the subVI does not matter for this example. The important point is the passing of two numeric
inputs and one numeric output.

© National Instruments Corporation 79 Introduction to LabVIEW Hands-On

Icon and Connector Pane
• Use this connector pane layout as a standard

• Top terminals are usually reserved for references, such as a file
reference

• Bottom terminals are
usually reserved for
error clusters

The Icon and Connector Pane allows you to define the data being transferred in and out
of the subVI as well as its appearance in the main LabVIEW code. Every VI displays an
icon in the upper-right corner of the front panel and block diagram windows. After you
build a VI, build the icon and the connector pane so you can use the VI as a subVI.

The icon and connector pane correspond to the function prototype in text-based
programming languages. There are many options for the connector pane, but some
general standards are specified above. Namely, to always reserve the top terminals for
references and the bottom terminals for error clusters.

To define a connector pane, right-click the icon in the upper right corner of the front
panel and select Show Connector from the shortcut menu. Each rectangle on the
connector pane represents a terminal. Use the terminals to assign inputs and outputs.
Select a different pattern by right-clicking the connector pane and selecting Patterns
from the shortcut menu.

Introduction to LabVIEW Hands-On 80 ni.com

Icon and Connector Pane – Create Icon
• Create custom icons by right-clicking the icon in the upper right corner of

the front panel or block diagram and selecting Edit Icon or by double-
clicking the icon

• You also can drag a graphic from anywhere in your file system and drop
it on the icon

• Refer to the
Icon Art Glossary at
ni.com for standard
graphics to use in
a VI icon

An icon is a graphical representation of a VI. If you use a VI as a subVI, the icon identifies the
subVI on the block diagram of the VI. The Icon Editor is a utility that comes built into
LabVIEW 8 to allow users to fully customize the appearance of their subVIs. This allows
programmers to visually distinguish their subVIs, which will greatly improve the usability of the
subVI in large portions of code.

After you’ve defined the connector pane and have customized the icon, you are ready to place
the subVI into other LabVIEW code. There are two ways to accomplish this:

To place a subVI on the block diagram

1. Click the Select a VI button on the Functions palette

2. Navigate to the VI you want to use as a subVI

3. Double-click to place it on the block diagram

To place an open VI on the block diagram of another open VI

1. Use the Positioning tool to click the icon of the VI you want to use as a subVI

2. Drag the icon to the block diagram of the other VI

© National Instruments Corporation 81 Introduction to LabVIEW Hands-On

Exercise 4.1 – Creating a SubVI

Create a subVI from a new VI, which adds two inputs and outputs the sum.
1. Open a new VI (Ctrl+N).
2. Place the Add function (Programming » Numeric) on the block diagram.
3. Create controls and indicators by right-clicking and selecting Create » Control or

Indictor. The Block Diagram and Front Panel should look similar to the images
below.

4. On the Front Panel right-click the Icon at the top right and select Show Connector to
reveal the Connector Pane.

5. Assign icon terminals to the two controls and indicators by first left-clicking on a icon
terminal and then clicking the desired control/indicator
Note: General convention is to have controls as data inputs on the left side and
indicators as outputs on the rights side of this icon.

Introduction to LabVIEW Hands-On 82 ni.com

6. Right-click on the Connector Panel and select Edit Icon…. This will bring up the Icon
Editor.

7. Modify the graphics to more accurately represent the function of the SubVI, in this case
Addition.

8. Save the SubVI. It can now be used in any other VI to perform any function, in this case
adding two numbers.

(End of Exercise)

© National Instruments Corporation 83 Introduction to LabVIEW Hands-On

State Machines

• While Loop
• Case Structure
• Shift Register

1

2

3

You can use the state machine design pattern to implement an algorithm that you can
explicitly described with a state diagram or flowchart. A state machine consists of a set of
states and a transition function that maps to the next state.

Each state can lead to one or multiple states or end the process flow.

A common application of State machines are to create user interfaces. In a user interface,
different user actions send the user interface into different processing segments. Each
processing segment acts as a state.

Process testing is another common application of the state machine design pattern. For a
process test, a state represents each segment of the process. Depending on the result of each
state’s test, a different state might be called.

Introduction to LabVIEW Hands-On 84 ni.com

State Machines Transitions

• Several programming
techniques exist for transitioning
from state to state in LabVIEW
using State Machines

• Default transition implies that
after one state, another state
always follows

• Transitions between two
potential states can be handled
by a Select Function

If one state can transition to several potential states, a case structure can be
used. Another approach is to use an array of potential future states, and allow
decision making code to select which to pass to the shift register.

© National Instruments Corporation 85 Introduction to LabVIEW Hands-On

Communicating between loops
•Communicating between loops using data
flow is not possible

•The left loop will execute completely
before the right loop

•Variables are needed when communication
with wires does not give the desired behavior

There is no way to communicate between parallel loops using data flow. Data cannot enter or
leave a structure while it’s still running via dataflow. Variables are block diagram elements that
allow you to access or store data in another location. Local variables store data in front panel
controls and indicators. Variables allow you to circumvent normal dataflow by passing data
from one place to another without connecting the two places with a wire

Introduction to LabVIEW Hands-On 86 ni.com

Local Variables
• Local Variables allow data to be passed between parallel loops.
• A single control or indicator can be read or written to from more than one
location in the program

– Local Variables break the dataflow paradigm and should be used sparingly

Local variables are located in the Structures subpalette of the Functions palette.

When you place a local variable on the diagram, it contains by default the name (owned label) of
the first object you placed on the front panel.

You use a local variable by first selecting the object you want to access. You can either click on
the local variable with the Operating tool and select the object (by owned label) you want to
access, or pop up on the local variable and choose the object from the Select Item menu.

Next, you must decide to either read or write to the object. Right click on the local variable and
choose Change To Read or Change to Write.

© National Instruments Corporation 87 Introduction to LabVIEW Hands-On

Exercise 4.2 – Creating Local Variables

Create a VI that communicates between two parallel while loops using a Local Variable.
1. Open a new VI.
2. On the Front Panel, place a LED Switch and two Boolean indicators.
3. On the Block Diagram, place two while loops down and create a stop button by

right-clicking on the exit condition terminal and selecting Create » Control.
4. Arrange the code to be similar to the following.

5. Right-click on the LED Switch Control on the Block Diagram and select Create »
Local Variable.

6. Place the new Local Variable in the second while loop.

Introduction to LabVIEW Hands-On 88 ni.com

7. Right-click the Variable and select Change To Read. This means that instead of writing data
to local variable we read data already written to the variable.

8. Repeat the process for the Stop button.

9. Right-click on the Stop Button on the Front Panel and change the Mechanical Action to
Switch When Released. Local Variables cannot store latched Boolean data. The finished
code will look as follows:

10. Run the VI. Notice how we can control the LED values and stop two loops with one
control.

11. Save the VI.

(End of Exercise)

© National Instruments Corporation 89 Introduction to LabVIEW Hands-On

Producer/Consumer Design Pattern

Besides Variables, there are
several other methods for
transferring data between
parallel loops. This is
accomplished using Notifier
and Queue functions. Notifiers
can be used to implement a
Master/Slave design pattern
and Queues are used to
implement a
Producer/Consumer design
pattern. Both enable
LabVIEW programmers to
share data between loops.

Select File » New and navigate
to VI » From Template »
Frameworks » Design
Patterns to see an overview of
both design patterns.

Introduction to LabVIEW Hands-On 90 ni.com

V. Large Program Development

A. Navigation Window
B. LabVIEW Project
C. Shared Variable

© National Instruments Corporation 91 Introduction to LabVIEW Hands-On

• Shows the current region of view
compared to entire Front Panel or
Block Diagram

• Great for large programs

LabVIEW Navigation Window

* Organize and reduce program visual size with subVIs

Select View»Show Navigation Window to display this window.

Use the window to navigate large front panels or block diagrams. Click an area
of the image in the Navigation Window to display that area in the front panel or
block diagram window. You also can click and drag the image in the
Navigation Window to scroll through the front panel or block diagram.

Introduction to LabVIEW Hands-On 92 ni.com

LabVIEW Project

• Group and organize VIs
• Hardware and I/O management
• Manage VIs for multiple targets
• Build libraries and executables
• Manage large LabVIEW applications
• Enable version tracking and management

(LabVIEW»Project»New)

LabVIEW Project

Use projects to group together LabVIEW files and non-LabVIEW files, create build
specifications, and deploy or download files to targets. A target is a device or machine
on which a VI runs. When you save a project, LabVIEW creates a project file (.lvproj),
which includes configuration information, build information, deployment information,
references to files in the project, and so on.

You must use a project to build stand-alone applications and shared libraries. You also
must use a project to work with an RT, FPGA, or PDA target. Refer to the specific
module documentation for more information about using projects with the LabVIEW
Real-Time, FPGA, and PDA Modules.

Project-style LabVIEW Plug and Play instrument drivers use the project and project
library features in LabVIEW 8.0. You can use project-style drivers in the same way as
previous LabVIEW Plug and Play drivers.

Project Explorer Window

Use the Project Explorer window to create and edit projects. Select File»New Project to
display the Project Explorer window. You also can select Project»New Project or
select File»New and then select Empty Project in the New dialog box to display the
Project Explorer window.

© National Instruments Corporation 93 Introduction to LabVIEW Hands-On

Shared Variables

• Shared Variables are used to send data between VIs.
• Variable Types:

– Single Process: share the data among VIs on the local computer.
– Network-published: communicate between VIs, remote

computers, and hardware through the Shared Variable Engine.

• Shared Variable must exist within a project library.
• Shared Variable must be deployed to be available to other projects

and remote computers.

Shared variables are used to share data among VIs or between locations in an application
that cannot be connected with wires. There are two variable types:

• Single Process: create shared variables that you want to read and write on a single
computer.

• Network-published: create shared variables that you want to read and write on remote
computers and targets on the same network.

These shared variables must be inside project libraries. If you create a shared variable from
a target or folder that is not inside a project library, LabVIEW creates a new project library
and places the shared variable inside. You must deploy a shared variable for the variable to
be available to other projects and remote computers. You can do by running the VI in
which the shared variable resides. You also can right-click the owning project library of
the shared variable and select Deploy from the shortcut menu.

Introduction to LabVIEW Hands-On 94 ni.com

Exercise 5.1 – Shared Variable

Create a Shared Variable from a project and use that Variable instead of the Local Variable
in the exercise created previously.

1. Open the Local Variable VI that was created in Exercise 4.2.

2. Select Project » New Project from the Menu Bar. This will create a new project.
When prompted select Add to add the currently open VI to the project.

3. Save the project by selecting Project » Save Project in the Project Explorer Window.

4. Create a Shared Variable by right-clicking on My Computer and selecting New »
Variable.

5. In the configuration window, name the Variable and select Boolean from the Data
Type drop down menu. Leave the rest of the options as default and click OK.

© National Instruments Corporation 95 Introduction to LabVIEW Hands-On

6. Since Shared Variables need a to reside in a Library, LabVIEW creates one. Save
this Library by right-clicking and selecting Save.

7. Shared Variables can easily be used by clicking and dragging from the Project
Explorer to the VI. Click and drag the Shared Variable you created to the Block
Diagram on the open Local Variable VI.

8. Delete the Local Variable that controls the stop button in the second loop.

9. Place the variable in the second loop and wire the variable to the exit terminal.

10. Place another copy of the Shared Variable in the first loop. This Shared Variable
will write the information that is read in the second loop.

11. Change the Shared Variable to write by right-clicking and selecting Change To
Write, and wire so that the value of the Stop button is being written to the Shared
Variable. The completed code should look similar to the following:

12. Rename the VI by selecting File » Save As… and Rename.

13. Run the VI. Notice that when you click the Stop button both loops stop and the VI
stops.

(End of Exercise)

Introduction to LabVIEW Hands-On 96 ni.com

Section VI - Instrument Control

A. Overview of Instrument Control
B. GPIB
C. Serial
D. Instrument I/O Assistant
E. VISA
F. Instrument Drivers and IDNET

© National Instruments Corporation 97 Introduction to LabVIEW Hands-On

What Types of Instruments Can Be Controlled?
• GPIB
• Serial
• Modular Instruments
• PXI Modular Instruments
• Image Acquisition
• Motion Control
• USB
• Ethernet
• Parallel Port
• CAN

When configuring a test system it is often necessary to mix and match instruments from various
categories. There are many different types of instruments, including GPIB, serial, modular
instruments, PXI modular instruments, image acquisition, motion control, USB, Ethernet,
parallel port, and CAN. When using a PC to communicate with any type of instrument you must
be familiar with the properties of that instrument, such as the communication protocol.

Introduction to LabVIEW Hands-On 98 ni.com

GPIB

• General Purpose Interface Bus (GPIB)
• GPIB is usually used in stand alone bench top
instruments to control measurements and
communicate data

• Digital 8-bit parallel communication interface
• IEEE 488.1 and 488.2 define standards for GPIB

GPIB, or General Purpose Interface Bus, is defined by ANSI/IEEE Standard 488.1-1987 and
488.2-1992 and describes a standard interface for communication between instruments and
controllers from various venders. It is usually used in stand alone bench top instruments to
control measurements and communicate data. GPIB communication is a digital, 8-bit parallel
interface with three-wire handshaking and can achieve data transfer rates of 1 Mbyte/s and
higher.

Refer to National Instruments GPIB support site at www.ni.com/support/gpibsupp.htm for
additional information about GPIB.

© National Instruments Corporation 99 Introduction to LabVIEW Hands-On

Serial

• Serial communication transmits one bit at a time over a
transmission line

• Usually does not require external hardware
• Four parameters: baud rate, data bits, parity bit, stop
bits

Serial communication transmits data between a computer and a peripheral device. The serial
communication protocol uses a transmitter to send data one bit at a time over a single
communication line to a receiver. This method is bets when data transfer rates are low, or data
must be transmitted over long distances. Since most computers have at least one serial port
additional hardware is not necessary.

Four parameters should be specified for serial communication, baud rate, data bits, parity bit,
and stop bits. A character frame transmits each character as a start bit followed by the data bit,
as shown above for the character M.

Several different standards exist for serial ports, however these are the most common:
RS-232 (ANSI/EIA-232 Standard) (most popular)
RS-422 (AIA RS-422A Standard)
RS-485 (EIA-485 Standard)

Introduction to LabVIEW Hands-On 100 ni.com

Instrument I/O Assistant

• LabVIEW Express VI used to communicate with
message-based instruments

• Communicate with an instrument that uses a serial,
Ethernet, or GPIB interface

• Use the Instrument I/O Assistant when an instrument
driver is not available

The Instrument I/O Assistant is a LabVIEW Express VI which you can use to communicate with
message-based instruments and convert the response from raw data to an ASCII representation.
You can communicate with an instrument that uses a serial, Ethernet, or GPIB interface and
should be used when an instrument driver is not available.

The Instrument I/O Assistant organizes instrument communication into ordered steps. To use
the Instrument I/O Assistant, you place steps into a sequence. As you add steps to the sequence,
they appear in the Step Sequence window. LabVIEW adds inputs and output terminals to the
Instrument I/O Assistant Express VI on the block diagram that corresponds to the data you
receive from the instrument.

© National Instruments Corporation 101 Introduction to LabVIEW Hands-On

Exercise 6.1 – Loop back test with Instrument I/O Assistant

Note: This exercise uses the serial port and requires a serial cable and a wire. Most PCs
have a built in serial port available. The Instrument I/O Assistant can easily be used to
communicate with a GPIB device as well, but would require GPIB hardware instead
of the serial port.

Complete the following steps to configure the Instrument I/O Assistant to perform a
loopback test using the serial port.

1. Connect the serial cable to the COM port of the computer.

2. Connect the transmission and receive lines of the serial cable by connecting pins 2 and
3, as shown below.

3. Open a blank VI from the Getting Started screen.

4. Place the Instrument I/O Assistant on the block diagram. Right-click to open the
functions palette and select Instrument I/O » Instrument I/O Assistant.

5. Open the Instrument I/O Assistant configuration dialog box by double-clicking on the
icon if it does not appear.

6. Select COM1 from the Select an Instrument drop-down box.

7. Click Add Step to create a new step and select Query and Parse.

8. Configure the Query and Parse Step:

a. Type *IDN? in the Enter a Command field.

b. Name the output of the Instrument I/O Assistant by entering Loopback in the
Token name field.

c. Click the “Run this Step” button to execute the loopback test.

d. Click the “Auto Parse” button to convert the raw data to ASCII.

Introduction to LabVIEW Hands-On 102 ni.com

9. Click the OK button to exit the configuration window and generate the code.

10. Right-click the string output of the Instrument I/O Assistant and create an indicator.

11. Return to the front panel and run the VI. Observe the text in the indicator. Since we are
performing a loop back test the text of the indicator should match what command was
entered in the Instrument I/O Assistant. *IDN? is a standard command that returns device
information, but any text could have been used for a loop back test.

12. Save and close the VI.

(End of Exercise)

© National Instruments Corporation 103 Introduction to LabVIEW Hands-On

VISA

• Virtual Instrumentation Software Architecture (VISA)
• High-level API that calls low-level drivers
• Can control VXI, GPIB, serial, or computer-based
instruments

• Makes appropriate driver calls depending on the
instrument used.

Virtual Instrument Software Architecture (VISA) is the basis for in the LabVIEW instrument
driver. VISA does not directly provide instrumentation programming capability, but serves as a
high-level API that calls low-level drivers. VISA can control VXI, GPIB, serial, or other
computer-based instruments and makes the correct driver calls depending on the type of
instrument.

In LabVIEW, VISA is a single library of functions that adapt to different instruments, so it is not
necessary to use separate I/O palettes. The following terminology is used for VISA
programming:

•Resource – Any instrument in the system including serial and parallel ports

•Session – Communications channel that is used by VISA to identify a specific reference to that
instrument.

•Instrument Descriptor – Exact name of the instrument (see below for examples)

Introduction to LabVIEW Hands-On 104 ni.com

Instrument Drivers

• Plug and Play drivers are a set of VIs that control a
programmable instrument

• VIs correspond to instrument operation: configuring,
triggering, and reading measurements

• Help getting started since programming protocol for each
instrument is already known

A LabVIEW Plug and Play instrument driver is a set of VIs that control a
programmable instrument. Each VI in the driver corresponds to a specific instrument
operation, such as configuring, triggering, and reading measurements. This greatly
reduces development time by allowing you to get started using the instrument from
LabVIEW without an in depth knowledge of the communication protocol.

Below is an example of the instrument driver for the Agilent 34401 digital multimeter
(DMM) that initializes, configures, read a measurement, closes the session with the
instrument, and checks for errors.

© National Instruments Corporation 105 Introduction to LabVIEW Hands-On

IDNET

• Instrument Driver Network (IDNET)
• Instrument Driver Finder within LabVIEW

Tools » Instrumentation » Find Instrument Drivers
Help » Find Instrument Drivers

• Can be found online at www.ni.com/idnet

Most LabVIEW Plug and Play instrument drivers can be found in the Instrument Driver
Finder within LabVIEW, which can be accessed by selecting Tools » Instrumentation »
Find Instrument Drivers or Help » Find Instrument Drivers. The Instrument Driver
Finder connects to www.ni.com to find instrument drivers. The Finder allows you to
view connected instruments and currently installed drivers, as well as search for drivers
by manufacturer and keyword

Introduction to LabVIEW Hands-On 106 ni.com

Additional Resources
• NI Academic Web & Student Corner

– http://www.ni.com/academic

• Connexions: Full LabVIEW Training Course
– www.cnx.rice.edu
– Or search for “LabVIEW basics”

• LabVIEW Certification
– LabVIEW Fundamentals Exam (free on www.ni.com/academic)
– Certified LabVIEW Associate Developer Exam (industry recognized certification)

• Get your own copy of LabVIEW Student Edition
– www.ni.com/academic By Robert H Bishop.

Published by Prentice Hall.

Updated for

LabVIEW 8

© National Instruments Corporation 107 Introduction to LabVIEW Hands-On

The LabVIEW Certification Program

Certified LabVIEW
Developer

Certified LabVIEW Associate
Developer

Certified
LabVIEW
Architect

Architect
• Mastery of LabVIEW
• Expert in large application development
• Skilled in leading project teams

Developer
• Advanced LabVIEW knowledge

and application development
experience

• Project management skills

Associate Developer
• Proficiency in navigating

LabVIEW environment
• Some application
development experience

Fundamentals Exam
• Pre-Certification Skills Test Free OnFree On--Line Fundamentals ExamLine Fundamentals Exam

Today, more and more companies and hiring managers are requesting for LabVIEW expertise in
their job interviews. The LabVIEW Certification Program is built on a series of professional
exams. LabVIEW Certifications are used to validate LabVIEW expertise and skills for
employment opportunities and for project bids.

The Certified LabVIEW Associate Developer is the first-step for LabVIEW certification and it
demonstrates a strong foundation in using LabVIEW and the LabVIEW environment. As
students, your Certified LabVIEW Associate Developer certification differentiates your
LabVIEW skill for employment opportunities and also gets you recognition for your LabVIEW
expertise. The CLAD is a 1-hour multiple choice exam conducted at Pearson VUE testing
centers around the country. The exam covers multiple topics on the LabVIEW environment
including dataflow concepts, programming structures, Advanced file I/O techniques, Modular
programming practices, VI object properties and control references.

Thinking about getting your CLAD certification? Take the free online LabVIEW Fundamentals
Exam as a sample test.

The Certified LabVIEW Developer and Architect are professional certifications that validate
Advanced LabVIEW knowledge and application development experience. Additionally, the
Architect certification also demonstrates skills in leading project teams and large application
development experience. These exams are 4-hour practical exams conducted by National
Instruments.

Introduction to LabVIEW Hands-On 108 ni.com

Electronics Workbench and Multisim

• World’s most popular software for
learning electronics

• 180,000 industrial and academic users
• Products include:

– Multisim: Simulation and Capture
– Multi-MCU: Microcontroller Simulation
– MultiVHDL: VHDL Simulation
– Ultiboard: PCB Layout
– Electronics CBT: Computer-based training

• Low cost student editions available
• www.electronicsworkbench.com

Electronics Workbench products are the most widely used electronics software in
electrical engineering and electronics technology departments around the globe. As the
only company to design our products specifically for the education market, our software
has become the teaching and learning tool of choice for thousands of educators.

MULTISIM — SIMULATION AND CAPTURE
Multisim is an intuitive, drag-and-drop schematic capture and simulation program that
allows educators and students to quickly create complete circuits containing both analog
and digital components.

MULTIMCU— MICROCONTROLLER CO-SIMULATION
MultiMCU adds microcontroller unit co-simulation capabilities to Multisim, allowing
you to include an MCU, programmed in assembly code, within your SPICE (and
optionally VHDL) modeled circuit.

MULTIVHDL — VHDL CO-SIMULATION
MultiVHDL adds patented VHDL co-simulation capabilities to Multisim. It is a
powerful yet easy-to-use application that is perfect for teaching students about HDL
programming, or for including VHDL-programmed devices in a Multisim project.

ULTIBOARD — PCB LAYOUT
Ultiboard allows students to gain exposure to the physical implementation and
manufacturing of circuits on PCBs. Their Multisim schematic can be imported into
Ultiboard with a single mouse-click.

ELECTRONICS CBT — COMPUTER-BASED TRAINING
Electronics CBT offers a complete, standalone introductory electronics curriculum to
support your lectures or to act as the centerpiece of your course delivery. E-CBT is
enhanced with over 400 exercises and experiments that run directly in Multisim’s virtual
lab environment.

Introduction to LabVIEW Hands-On 109 ni.com

Multisim Integrated with LabVIEW
1. Create Schematic 2. Virtual Breadboard 3. Simulate

4. PCB Layout 5. Test 6. Compare

1. Multisim - Schematics
• Easy-to-use schematics
• Simply click and drag
• 3D animated parts
• Wire drag without breaking

connections
2. Multisim – Virtual breadboard

• Breadboarding techniques
• Synchronized with schematic
• Wiring report for Elvis (step 5)

3. Multisim – Simulation
• 13.000 part library
• 20 virtual instruments
• Changes on-the-fly
• New microcontroller simulation
• Animated parts (LEDs, and 7-

segment displays)

4. Ultiboard – PCB Layout
• Integrated with Multisim
• User-friendly interface
• 3D view
• Design rule check
• Built-in autorouting

5. Elvis – Test
• Instrumentation
• Data acquisition
• Prototyping

6. LabVIEW – Compare
• Automatically import:

– Multisim virtual data
– Elvis real data

• Compare ideal and real data

Introduction to LabVIEW Hands-On 110 ni.com

Your Next Step…

Take the free LabVIEW Fundamentals Exam at
ni.com/academic

Your first step to become LabVIEW Certified!

© National Instruments Corporation 111 Introduction to LabVIEW Hands-On

Solutions Section
Exercise 1.2:

Exercise 1.2 – Track C:

Exercise 1.2 – Track A and B:

Introduction to LabVIEW Hands-On 112 ni.com

Exercise 2.1:

Exercise 2.1 – Track A, B, and C:

© National Instruments Corporation 113 Introduction to LabVIEW Hands-On

Exercise 2.2:

Exercise 2.2 – Track C:

Exercise 2.2 – Track A and B:

Note: Waveform Graphs and Charts have been
used interchangeably in Exercise 3.2 and 3.3.

Introduction to LabVIEW Hands-On 114 ni.com

Exercise 2.3:

Exercise 2.3 – Track C:

Exercise 2.3 – Track A and B:

© National Instruments Corporation 115 Introduction to LabVIEW Hands-On

Exercise 2.4:

Exercise 2.4

Introduction to LabVIEW Hands-On 116 ni.com

Exercise 3.1 and 3.2:

Exercise 3.2 – Track A, B, and C:

Exercise 3.1 – Track A, B, and C:

© National Instruments Corporation 117 Introduction to LabVIEW Hands-On

Exercise 3.3:

Exercise 3.3 – Track A and B:

Exercise 3.3 – Track C:

Introduction to LabVIEW Hands-On 118 ni.com

Exercise 4.1:

Exercise 4.1:

© National Instruments Corporation 119 Introduction to LabVIEW Hands-On

Exercise 4.2:

Exercise 4.2:

Introduction to LabVIEW Hands-On 120 ni.com

Exercise 5.1:

Exercise 5.1:

© National Instruments Corporation 121 Introduction to LabVIEW Hands-On

Exercise 6.1:

Exercise 6.1:

Introduction to LabVIEW Hands-On 122 ni.com

